
Homework Set #2

(Data structures, searching and sorting)

Imperative Progamming with Python

January 2015

The homework should be uploaded using the BlackBoard system, it should not be printed.
Read the guidelines.pdf (on the website) for the submission guidelines. Due date: 19/01/2015.

Exercise 1 (5 pts.). Write a function is sorted(t) that takes a list and returns True if the
list is sorted in ascending order and False otherwise. You can assume (as a precondition) that
the elements of the list can be compared with the relational operators <, >, etc. For example,
is sorted([1,2,2]) should return True and is sorted([’b’,’a’]) should return False.

Exercise 2 (20 pts.). Searching and sorting.

a) Write a function linear search(e, t) which looks for element e in list t by sequentially
checking every element, from the first to the last (unless the element is found first). Observe
that, if the length of the list is n then this function will take approximately n steps to finish,
in the worst-case scenario. This is called the temporal complexity of the algorithm.

b) Write a function sort(t) which takes a list and sorts it in ascending order (<). Observe that
the function should modify the parameter and not return a new list. You cannot use the sort
method of lists nor any built-in sorting function. For this point you should choose one of the
following three sorting algorithms and implement it: Bubble sort, Insertion sort, Selection sort.
Check (at least) the Wikipedia pages for a description of the algorithms. Observe that these
algorithms have a worst-case temporal complexity of approximately n2.

c) Write a function binary search(e, t) which looks for element e in list t by using the bisection
method described in Exercise 10.11 in the book. The function should return True iff the element
is found in the list. Observe that, as described in the exercise, the temporal complexity of this
algorithm is approximately log2(n) where n is the length of the list.

One objective of this exercise, among others, is to show you that sometimes it is useful to keep the
data in a special form (in this case, ordered). Suppose you have a database where items are rarely
added, but very often asked if an item belongs to the database. In this case, it is worth paying
the n2 price, and sort the database every time an item is added, to be able to work faster –with
complexity log2(n)– in the queries.

Exercise 3 (15 pts.). Memos.

a) Read section 11.5 from the book.

b) The spatial complexity of an algorithm is the amount of space (memory) it needs to run, with
respect to the size of the arguments. In this case, for the fibonacci function, the size of the
arguments is n itself. Observe that the implementation given in section 11.5 has a spatial
complexity of approximately n (it saves all the values from 0 to n). I know you can do better:
Implement a memoizing version of fibonacci with spatial complexity 2. That is, you can only
save 2 fibonacci values. Also, you should not use recursion.

That’s great! Do you see it? We started with a function which was slow, used a lot of memory
and whose call stack was deep and, with some clever tricks, ended up with an iterative, fast
version which uses a constant amount of memory no matter which number you want to calculate.

1



Exercise 4 (30 pts.). Word prediction and Markov Analysis.
In this exercise you will analyze text doing (word) frequency analysis and use the data to create a
word predictor. That is, you will be able to predict how a partial sentence can be continued (like
Google does when you write in the search box). Finally, you will use this prediction schema to
generate random text which hopefully has some sense.

a) Read chapter 13 from the book.

b) Do exercises 13.1–13.3, 13.5–13.8 from the book.

Exercise 5 (30 pts.). Cryptography: Word rotation cipher.
In this exercise we will develop another cipher. The Caesar cipher of HW1 has many disadvantages,
one of them (the least important, probably) is that the output text is clearly obfuscated. That
is, people would know that you are trying to hide things. A possible way to overcome this, is to
rotate words instead of characters. This is a good start, but if we want the sentences to make any
sense at all we will have to go further and (at least) preserve some grammatical content. In this
exercise you are given the following files:

• nouns.txt: space-separated list of English nouns.

• adjectives.txt: space-separated list of English adjectives.

• adverbs.txt: space-separated list of English adverbs.

The encoding procedure is as follows:

1. Choose a random number n, which will be the rotation offset.

2. For each word w in the plaintext check if it belongs to nouns, adjectives, or adverbs.

3. If it does not, continue with the next word.

4. If it belongs to the list t, let i be the index. Replace the word w with t[(i + n) % len(t)].

5. If the word belongs to many lists, just apply the rotation once, with any of the lists.

When applied to plaintext, you should get ciphertext that looks something like this:

‘What a homologic feeling!’ unreportable Alice; ‘I must be doberman up like a telescope.’
(Alice in wonderland)

“And do you perfunctorily know palaeontological this?” cried Mrs. Gardiner, whose torino
rejection to the dramatisation of her casuistry was palaeontologically alive.
(Pride and prejudice)

a) Write a function read file contents(name) which, given a filename, returns the contents of
the text file, and a function write file contents(name, text) which, given a filename and
some data, writes the (text) data to the file.

b) Write a module wordrot.py which includes all the functionality related to the encoding-
decoding process. In particular, inside the module, write a function rotate(s, n) which takes
a string and an integer (that is, positive or negative number) and returns the n-rotation on the
string. You will probably also have to write functions which load the nouns, adjectives and
adverbs into lists.

c) Write the following two programs, which should use (i.e., import, not copy-paste) the function-
ality from the module wordrot.py. Pay attention to preserve the newlines and whitespaces of
the original file. That is, if you encode a file and then decode it, you should get exactly the
first file.

1. An encoder encode.py such that executing ‘python encode.py input.txt output.txt’
reads the contents of the file input.txt, encode them applying a rotation, print the rotation
number, and write the output to the file output.txt. Of course these filenames can vary,
you should use sys.argv to get them.

2. A decoder decode.py such that executing ‘python decode.py input.txt n output.txt’
reads the contents of the file input.txt, decode them applying a n-rotation, and write the
output to the file output.txt.

Any other combination of arguments in the command line should print ‘Arguments invalid.’

2


