
Imperative programming with Python
January 2012 project: Class #1

Facundo Carreiro

ILLC, University of Amsterdam

January 9th, 2012

Organizational & administrative stuff

Instructor: Facundo Carreiro
(http://www.science.uva.nl/~facundo/).

Teaching Assistant: Fabio Zanasi
(lastname.firstname@gmail.com).

6 ECs.

From January the 9th to February the 3rd.

4x2h sessions per week (3 classes and 1 tutorial).

Evaluation
1 3 homework sets (one per week in the first 3 weeks).
2 A final project (in groups of around 3–4 people).

F. Carreiro (ILLC) Imperative programming with Python January 9th, 2012 2 / 19

http://www.science.uva.nl/~facundo/
lastname.firstname@gmail.com

Contents (roughly)

1 Basic object-oriented programming

Variables, expressions and statements.
Functions.
Execution flow control.
Iteration and repetition.
Data structures: Lists, dictionaries, tuples.
File Input/Output.
Classes, objects and inheritance.

2 Python specifics

Python modules.
A glimpse of the huge Python standard library.

3 A bit of (unavoidable) software engineering

Group work.
Time estimation, testing, debugging.

F. Carreiro (ILLC) Imperative programming with Python January 9th, 2012 3 / 19

What is programming all about?

“Computer science is no more about computers than astronomy is about

telescopes, biology is about microscopes or chemistry is about beakers and

test tubes. Science is not about tools, it is about how we use them and

what we find out when we do.” – Fellows, M.R., and Parberry, I.

Computer science is about problem solving.

The most important skill is knowing how to analyze a problem, break
it into pieces and solve it efficiently.

Examples of problems:
1 I want to get to Amsterdam Central Station as fast as possible.
2 I want to sort a deck of cards.
3 I have a meeting with my supervisor tomorrow and I didn’t do anything.

We will concentrate on problems that can be solved with a computer.

F. Carreiro (ILLC) Imperative programming with Python January 9th, 2012 4 / 19

Algorithms

An algorithm is a finite sequence of steps to solve a particular
problem.

Input: Flour, eggs, sugar, butter, milk
Output: Cake

1 Heat the oven.

2 Mix ingredients in a bowl.

3 Put mixture in a baking pan.

4 Bake for 50 minutes.

5 Keep baking until top springs
back when touched.

Input: A list of numbers L = n1, . . . , nk
Output: L ordered by <

1 For current pos := 1 to k do

Look for the smallest
ncurrent pos , . . . , nk .

Switch it with ncurrent pos

Input: Money
Output: Cake

1 Go to Albert Heijn.

2 Look for cake.

3 Buy cake.

Programming languages

Formal, unambiguous languages to write algorithms.

Can be classified in low-level (aka. “machine code”) and high-level.

F. Carreiro (ILLC) Imperative programming with Python January 9th, 2012 5 / 19

Low-level programming languages

Use a tiny set of instructions that the computer’s CPU understands.

Mess directly with the computer’s memory cells.

Are architecture-specific (only work for one specific CPU).

; Author: Paul Hsieh

gcd: neg eax

je L3

L1: neg eax

xchg eax ,edx

L2: sub eax ,edx

jg L2

jne L1

L3: add eax ,edx

jne L4

inc eax

L4: ret

Figure: GCD for Intel x86

F. Carreiro (ILLC) Imperative programming with Python January 9th, 2012 6 / 19

High-level programming languages

Complex set of instructions and constructions.
More similar to natural language.
Easier to read and write. Shorter (in general). Portable.

int GCD(int a, int b)

{

while (1)

{

a = a % b;

if(a == 0)

return b;

b = b % a;

if(b == 0)

return a;

}

}

Figure: GCD in C

F. Carreiro (ILLC) Imperative programming with Python January 9th, 2012 7 / 19

How does the computer execute a program?

Strictly speaking, the CPU only understands ‘bytecode’ (binary
encoded instructions).

Low-level languages get compiled to bytecode quite easily.

LL source code → Compiler → Bytecode → CPU → Output

High-level languages can also be compiled

HL source code → Compiler → Bytecode → CPU → Output

and some of them can be interpreted! (e.g., Python!)

HL source code → Interpreter → Output

An interpreter is a program that translates and executes the code live.

F. Carreiro (ILLC) Imperative programming with Python January 9th, 2012 8 / 19

Time for some Python!

Python is an interpreted high-level language.

It is an imperative language but also has some functional features.

Let’s take a look at our first Python program

greetings !

print "Hello World!"

assign some variables

a = 2

b = 4

c = 3

print the average

print (a + b + c)/3

1 Run the Python interpreter and write this program.
2 Write this code in a file and run it (python -i code.py).
3 Run the code with ‘python code.py’.

F. Carreiro (ILLC) Imperative programming with Python January 9th, 2012 9 / 19

Values and types

A program works by manipulating values.

Values are classified in types.

Value Type
3, 4, 1000 Integer
’a’, "Hello World", ’"Freedom"’ String
3.141592654 Float
True, False Boolean
...

...

Figure: Some built-in data types

The type(·) function tells you the type of an expression

>>> type(3 + 8)

<type ’int ’>

>>> type(’stupid example ’)

<type ’str ’>

F. Carreiro (ILLC) Imperative programming with Python January 9th, 2012 10 / 19

Variables

Variables are names that we assign to values.

The = sign links a value to a variable.

In Python, variables are created when first assigned a value.

n = 3

welcome_message = "Welcome aboard!"

should be read as n 7→ 3 and welcome message 7→ Welcome aboard.

Variables can later be used in other expressions

>>> print n + 7

10

>>> n = n + 1

>>> print n

4

Good practice tip: use meaningful names for variables!

Watch out: Some names are reserved and can not be used as variable names
(aka. reserved keywords).

F. Carreiro (ILLC) Imperative programming with Python January 9th, 2012 11 / 19

Numeric types: Integers, floating point and friends

Integers are (relatively) small numbers without a decimal part.

It is the default type when you write a number without a point.

>>> type (2000)

<type ’int ’>

>>> type (-15)

<type ’int ’>

They are bounded

>>> type (1234567890123)

<type ’long ’>

>>> type (-1234567890123)

<type ’long ’>

F. Carreiro (ILLC) Imperative programming with Python January 9th, 2012 12 / 19

Numeric types: Integers, floating point and friends

Long numbers have “unlimited” precision.

You specify them by using an L suffix.

>>> type (2000L)

<type ’long ’>

If a number is too big to be an Integer it is interpreted a as Long.

>>> type (12345678901)

<type ’long ’>

Note: In Python 3.x Integers and Longs have been unified.

F. Carreiro (ILLC) Imperative programming with Python January 9th, 2012 13 / 19

Numeric types: Integers, floating point and friends

Floats are an approximation to real numbers.

You specify them using a dot in the number.

>>> type (15.0)

<type ’float ’>

>>> type (-3.141592654)

<type ’float ’>

They are also bounded

>>> print 0.1234567890123456

0.123456789012

F. Carreiro (ILLC) Imperative programming with Python January 9th, 2012 14 / 19

Numeric types: operations

Operations between numeric types include, among others:
addition (+), subtraction (-), multiplication (*), division (/),

exponentiation (**), remainder (%).

They are used in infix notation: arg � arg .

>>> 3 + 2 ** 5 * 4 / 2

Watch out for the precedence in the operations! The expression
above is equivalent to. . .

1 3 + 2
5×4
2

2 (3 + 2)
5×4
2

3 3 + 25 × 4
2

We use parenthesis to group the expressions

>>> 3 + (2 ** (5 * 4 / 2))

1027

>>> (3 + 2) ** (5 * 4 / 2)

9765625

F. Carreiro (ILLC) Imperative programming with Python January 9th, 2012 15 / 19

Numeric types: operations

The same symbol may refer to different functions, i.e:

>>> 5/2

2

in this case / : Integer× Integer→ Integer therefore the answer gets
rounded to an integer.

If we use floats we get what we expected

>>> 5.0/2.0

2.5

Which division do we use in the following line? does this work?

>>> 5/2.0

Yes, in these cases the most general function is used, i.e.:
/ : Float× Float→ Float

F. Carreiro (ILLC) Imperative programming with Python January 9th, 2012 16 / 19

Debugging

It is the process of finding and fixing errors in a computer program.

Figure: First computer bug (1947)

F. Carreiro (ILLC) Imperative programming with Python January 9th, 2012 17 / 19

Debugging

Syntax errors: Your text is not a valid Python program.

>>> n * 5 = 20

File "<stdin >", line 1

SyntaxError: can ’t assign to operator

Runtime errors: Found during the execution of a program.

>>> principal = 327.68

>>> interest = principle * rate

NameError: name ’principle ’ is not defined

>>> n = 0

>>> 5555/n

Traceback (most recent call last):

File "<stdin >", line 1, in <module >

ZeroDivisionError: integer division or modulo by zero

Semantic error: No apparent error yet the program does not do what
you want. May be cause, for instance, by

Order of operations
Wrong assumptions about an operation (e.g. integer division)

F. Carreiro (ILLC) Imperative programming with Python January 9th, 2012 18 / 19

References

Chapters 1 and 2 of the book
http://greenteapress.com/thinkpython/thinkpython.html

Python documentation (extremely useful)
http://docs.python.org/

Numeric types
http://docs.python.org/library/stdtypes.html#typesnumeric

Floating point
http://docs.python.org/tutorial/floatingpoint.html

First computer bug
http://www.history.navy.mil/photos/images/h96000/h96566kc.htm

F. Carreiro (ILLC) Imperative programming with Python January 9th, 2012 19 / 19

http://greenteapress.com/thinkpython/thinkpython.html
http://docs.python.org/
http://docs.python.org/library/stdtypes.html#typesnumeric
http://docs.python.org/tutorial/floatingpoint.html
http://www.history.navy.mil/photos/images/h96000/h96566kc.htm

