
Imperative programming with Python
January 2012 project: Class #3

Facundo Carreiro

ILLC, University of Amsterdam

January 11th, 2012

Functions: DIY

Functions are defined with the def keyword.

def is_even(n):

if n % 2 == 0:

return True

else:

return False

The argument passed to is even(n) will be assigned to n .

The return keyword sets the return value and exits the function
immediately. It can also be used without a value (just return).

Good practice tip: reduce the number of return points. If possible,
have only one.

def is_even(n):

return (n % 2 == 0)

F. Carreiro (ILLC) Imperative programming with Python January 11th, 2012 2 / 18

Functions: DIY

Functions are defined with the def keyword.

def is_even(n):

if n % 2 == 0:

return True

else:

return False

The argument passed to is even(n) will be assigned to n .

The return keyword sets the return value and exits the function
immediately. It can also be used without a value (just return).

Good practice tip: reduce the number of return points. If possible,
have only one.

def is_even(n):

return (n % 2 == 0)

F. Carreiro (ILLC) Imperative programming with Python January 11th, 2012 2 / 18

Functions: DIY

Functions are defined with the def keyword.

def is_even(n):

if n % 2 == 0:

return True

else:

return False

The argument passed to is even(n) will be assigned to n .

The return keyword sets the return value and exits the function
immediately. It can also be used without a value (just return).

Good practice tip: reduce the number of return points. If possible,
have only one.

def is_even(n):

return (n % 2 == 0)

F. Carreiro (ILLC) Imperative programming with Python January 11th, 2012 2 / 18

Functions: local variables

Variables inside function definitions have a local scope.

def average(n, m):

thesum = float(n + m)

return thesum /2

You can only use the function as a black box

>>> print average (3,4)

3.5

>>> print thesum

Traceback (most recent call last):

File "<stdin >", line 1, in <module >

NameError: name ’thesum ’ is not defined

Design tip: thinking of functions as black boxes performing a certain
action is the way to go.

F. Carreiro (ILLC) Imperative programming with Python January 11th, 2012 3 / 18

Functions: execution and the call stack

I

I
I
I
I
I
I
I
I
I
I

def cat_twice_and_print(part1 , part2):

cat = part1 + part2

print_twice(cat)

def print_twice(msg):

print msg

print msg

line1 = ’welcome ’

line2 = ’to the jungle ’

cat_twice_and_print(line1 , line2)

print twice

msg 7→ ’welcome to the jungle’

cat twice and print

part1 7→ ’welcome ’

part2 7→ ’to the jungle’

cat 7→ ’welcome to the jungle’

main

line1 7→ ’welcome ’

line2 7→ ’to the jungle’

Output:

welcome to the jungle

welcome to the jungle

F. Carreiro (ILLC) Imperative programming with Python January 11th, 2012 4 / 18

Functions: execution and the call stack

I

I

I
I
I
I
I
I
I
I
I

def cat_twice_and_print(part1 , part2):

cat = part1 + part2

print_twice(cat)

def print_twice(msg):

print msg

print msg

line1 = ’welcome ’

line2 = ’to the jungle ’

cat_twice_and_print(line1 , line2)

print twice

msg 7→ ’welcome to the jungle’

cat twice and print

part1 7→ ’welcome ’

part2 7→ ’to the jungle’

cat 7→ ’welcome to the jungle’

main

line1 7→ ’welcome ’

line2 7→ ’to the jungle’

Output:

welcome to the jungle

welcome to the jungle

F. Carreiro (ILLC) Imperative programming with Python January 11th, 2012 4 / 18

Functions: execution and the call stack

I
I

I

I
I
I
I
I
I
I
I

def cat_twice_and_print(part1 , part2):

cat = part1 + part2

print_twice(cat)

def print_twice(msg):

print msg

print msg

line1 = ’welcome ’

line2 = ’to the jungle ’

cat_twice_and_print(line1 , line2)

print twice

msg 7→ ’welcome to the jungle’

cat twice and print

part1 7→ ’welcome ’

part2 7→ ’to the jungle’

cat 7→ ’welcome to the jungle’

main

line1 7→ ’welcome ’

line2 7→ ’to the jungle’

Output:

welcome to the jungle

welcome to the jungle

F. Carreiro (ILLC) Imperative programming with Python January 11th, 2012 4 / 18

Functions: execution and the call stack

I
I
I

I

I
I
I
I
I
I
I

def cat_twice_and_print(part1 , part2):

cat = part1 + part2

print_twice(cat)

def print_twice(msg):

print msg

print msg

line1 = ’welcome ’

line2 = ’to the jungle ’

cat_twice_and_print(line1 , line2)

print twice

msg 7→ ’welcome to the jungle’

cat twice and print

part1 7→ ’welcome ’

part2 7→ ’to the jungle’

cat 7→ ’welcome to the jungle’

main

line1 7→ ’welcome ’

line2 7→ ’to the jungle’

Output:

welcome to the jungle

welcome to the jungle

F. Carreiro (ILLC) Imperative programming with Python January 11th, 2012 4 / 18

Functions: execution and the call stack

I
I
I
I

I

I
I
I
I
I
I

def cat_twice_and_print(part1 , part2):

cat = part1 + part2

print_twice(cat)

def print_twice(msg):

print msg

print msg

line1 = ’welcome ’

line2 = ’to the jungle ’

cat_twice_and_print(line1 , line2)

print twice

msg 7→ ’welcome to the jungle’

cat twice and print

part1 7→ ’welcome ’

part2 7→ ’to the jungle’

cat 7→ ’welcome to the jungle’

main

line1 7→ ’welcome ’

line2 7→ ’to the jungle’

Output:

welcome to the jungle

welcome to the jungle

F. Carreiro (ILLC) Imperative programming with Python January 11th, 2012 4 / 18

Functions: execution and the call stack

I
I
I
I
I

I

I
I
I
I
I

def cat_twice_and_print(part1 , part2):

cat = part1 + part2

print_twice(cat)

def print_twice(msg):

print msg

print msg

line1 = ’welcome ’

line2 = ’to the jungle ’

cat_twice_and_print(line1 , line2)

print twice

msg 7→ ’welcome to the jungle’

cat twice and print

part1 7→ ’welcome ’

part2 7→ ’to the jungle’

cat 7→ ’welcome to the jungle’

main

line1 7→ ’welcome ’

line2 7→ ’to the jungle’

Output:

welcome to the jungle

welcome to the jungle

F. Carreiro (ILLC) Imperative programming with Python January 11th, 2012 4 / 18

Functions: execution and the call stack

I
I
I
I
I
I

I

I
I
I
I

def cat_twice_and_print(part1 , part2):

cat = part1 + part2

print_twice(cat)

def print_twice(msg):

print msg

print msg

line1 = ’welcome ’

line2 = ’to the jungle ’

cat_twice_and_print(line1 , line2)

print twice

msg 7→ ’welcome to the jungle’

cat twice and print

part1 7→ ’welcome ’

part2 7→ ’to the jungle’

cat 7→ ’welcome to the jungle’

main

line1 7→ ’welcome ’

line2 7→ ’to the jungle’

Output:

welcome to the jungle

welcome to the jungle

F. Carreiro (ILLC) Imperative programming with Python January 11th, 2012 4 / 18

Functions: execution and the call stack

I
I
I
I
I
I
I

I

I
I
I

def cat_twice_and_print(part1 , part2):

cat = part1 + part2

print_twice(cat)

def print_twice(msg):

print msg

print msg

line1 = ’welcome ’

line2 = ’to the jungle ’

cat_twice_and_print(line1 , line2)

print twice

msg 7→ ’welcome to the jungle’

cat twice and print

part1 7→ ’welcome ’

part2 7→ ’to the jungle’

cat 7→ ’welcome to the jungle’

main

line1 7→ ’welcome ’

line2 7→ ’to the jungle’

Output:

welcome to the jungle

welcome to the jungle

F. Carreiro (ILLC) Imperative programming with Python January 11th, 2012 4 / 18

Functions: execution and the call stack

I
I
I
I
I
I
I
I

I

I
I

def cat_twice_and_print(part1 , part2):

cat = part1 + part2

print_twice(cat)

def print_twice(msg):

print msg

print msg

line1 = ’welcome ’

line2 = ’to the jungle ’

cat_twice_and_print(line1 , line2)

print twice

msg 7→ ’welcome to the jungle’

cat twice and print

part1 7→ ’welcome ’

part2 7→ ’to the jungle’

cat 7→ ’welcome to the jungle’

main

line1 7→ ’welcome ’

line2 7→ ’to the jungle’

Output:

welcome to the jungle

welcome to the jungle

F. Carreiro (ILLC) Imperative programming with Python January 11th, 2012 4 / 18

Functions: execution and the call stack

I
I
I
I
I
I
I
I
I

I

I

def cat_twice_and_print(part1 , part2):

cat = part1 + part2

print_twice(cat)

def print_twice(msg):

print msg

print msg

line1 = ’welcome ’

line2 = ’to the jungle ’

cat_twice_and_print(line1 , line2)

print twice

msg 7→ ’welcome to the jungle’

cat twice and print

part1 7→ ’welcome ’

part2 7→ ’to the jungle’

cat 7→ ’welcome to the jungle’

main
line1 7→ ’welcome ’

line2 7→ ’to the jungle’

Output:

welcome to the jungle

welcome to the jungle

F. Carreiro (ILLC) Imperative programming with Python January 11th, 2012 4 / 18

Functions: execution and the call stack

I
I
I
I
I
I
I
I
I
I

I

def cat_twice_and_print(part1 , part2):

cat = part1 + part2

print_twice(cat)

def print_twice(msg):

print msg

print msg

line1 = ’welcome ’

line2 = ’to the jungle ’

cat_twice_and_print(line1 , line2)

print twice

msg 7→ ’welcome to the jungle’

cat twice and print

part1 7→ ’welcome ’

part2 7→ ’to the jungle’

cat 7→ ’welcome to the jungle’

main
line1 7→ ’welcome ’

line2 7→ ’to the jungle’

Output:

welcome to the jungle

welcome to the jungle

F. Carreiro (ILLC) Imperative programming with Python January 11th, 2012 4 / 18

Functions: execution and the call stack

I

I
I
I
I
I
I
I
I
I
I

def cat_twice_and_print(part1 , part2):

cat = part1 + part2

print_twice(cat)

def print_twice(msg):

print msg

print msg

line1 = ’welcome ’

line2 = ’to the jungle ’

cat_twice_and_print(line1 , line2)

print twice

msg 7→ ’welcome to the jungle’

cat twice and print
part1 7→ ’welcome ’

part2 7→ ’to the jungle’

cat 7→ ’welcome to the jungle’

main
line1 7→ ’welcome ’

line2 7→ ’to the jungle’

Output:

welcome to the jungle

welcome to the jungle

F. Carreiro (ILLC) Imperative programming with Python January 11th, 2012 4 / 18

Functions: execution and the call stack

I

I

I
I
I
I
I
I
I
I
I

def cat_twice_and_print(part1 , part2):

cat = part1 + part2

print_twice(cat)

def print_twice(msg):

print msg

print msg

line1 = ’welcome ’

line2 = ’to the jungle ’

cat_twice_and_print(line1 , line2)

print twice

msg 7→ ’welcome to the jungle’

cat twice and print
part1 7→ ’welcome ’

part2 7→ ’to the jungle’

cat 7→ ’welcome to the jungle’

main
line1 7→ ’welcome ’

line2 7→ ’to the jungle’

Output:

welcome to the jungle

welcome to the jungle

F. Carreiro (ILLC) Imperative programming with Python January 11th, 2012 4 / 18

Functions: execution and the call stack

I
I

I

I
I
I
I
I
I
I
I

def cat_twice_and_print(part1 , part2):

cat = part1 + part2

print_twice(cat)

def print_twice(msg):

print msg

print msg

line1 = ’welcome ’

line2 = ’to the jungle ’

cat_twice_and_print(line1 , line2)

print twice

msg 7→ ’welcome to the jungle’

cat twice and print
part1 7→ ’welcome ’

part2 7→ ’to the jungle’

cat 7→ ’welcome to the jungle’

main
line1 7→ ’welcome ’

line2 7→ ’to the jungle’

Output:

welcome to the jungle

welcome to the jungle

F. Carreiro (ILLC) Imperative programming with Python January 11th, 2012 4 / 18

Functions: execution and the call stack

I
I
I
I

I

I
I
I
I
I
I

def cat_twice_and_print(part1 , part2):

cat = part1 + part2

print_twice(cat)

def print_twice(msg):

print msg

print msg

line1 = ’welcome ’

line2 = ’to the jungle ’

cat_twice_and_print(line1 , line2)

print twice
msg 7→ ’welcome to the jungle’

cat twice and print
part1 7→ ’welcome ’

part2 7→ ’to the jungle’

cat 7→ ’welcome to the jungle’

main
line1 7→ ’welcome ’

line2 7→ ’to the jungle’

Output:

welcome to the jungle

welcome to the jungle

F. Carreiro (ILLC) Imperative programming with Python January 11th, 2012 4 / 18

Functions: execution and the call stack

I
I
I
I
I

I

I
I
I
I
I

def cat_twice_and_print(part1 , part2):

cat = part1 + part2

print_twice(cat)

def print_twice(msg):

print msg

print msg

line1 = ’welcome ’

line2 = ’to the jungle ’

cat_twice_and_print(line1 , line2)

print twice
msg 7→ ’welcome to the jungle’

cat twice and print
part1 7→ ’welcome ’

part2 7→ ’to the jungle’

cat 7→ ’welcome to the jungle’

main
line1 7→ ’welcome ’

line2 7→ ’to the jungle’

Output:

welcome to the jungle

welcome to the jungle

F. Carreiro (ILLC) Imperative programming with Python January 11th, 2012 4 / 18

Functions: execution and the call stack

I
I
I
I
I
I

I

I
I
I
I

def cat_twice_and_print(part1 , part2):

cat = part1 + part2

print_twice(cat)

def print_twice(msg):

print msg

print msg

line1 = ’welcome ’

line2 = ’to the jungle ’

cat_twice_and_print(line1 , line2)

print twice
msg 7→ ’welcome to the jungle’

cat twice and print
part1 7→ ’welcome ’

part2 7→ ’to the jungle’

cat 7→ ’welcome to the jungle’

main
line1 7→ ’welcome ’

line2 7→ ’to the jungle’

Output:
welcome to the jungle

welcome to the jungle

F. Carreiro (ILLC) Imperative programming with Python January 11th, 2012 4 / 18

Functions: execution and the call stack

I
I

I

I
I
I
I
I
I
I
I

def cat_twice_and_print(part1 , part2):

cat = part1 + part2

print_twice(cat)

def print_twice(msg):

print msg

print msg

line1 = ’welcome ’

line2 = ’to the jungle ’

cat_twice_and_print(line1 , line2)

print twice
msg 7→ ’welcome to the jungle’

cat twice and print
part1 7→ ’welcome ’

part2 7→ ’to the jungle’

cat 7→ ’welcome to the jungle’

main
line1 7→ ’welcome ’

line2 7→ ’to the jungle’

Output:
welcome to the jungle

welcome to the jungle

F. Carreiro (ILLC) Imperative programming with Python January 11th, 2012 4 / 18

Functions: execution and the call stack

I
I
I
I
I
I
I
I
I
I

I

def cat_twice_and_print(part1 , part2):

cat = part1 + part2

print_twice(cat)

def print_twice(msg):

print msg

print msg

line1 = ’welcome ’

line2 = ’to the jungle ’

cat_twice_and_print(line1 , line2)

print twice
msg 7→ ’welcome to the jungle’

cat twice and print
part1 7→ ’welcome ’

part2 7→ ’to the jungle’

cat 7→ ’welcome to the jungle’

main
line1 7→ ’welcome ’

line2 7→ ’to the jungle’

Output:
welcome to the jungle

welcome to the jungle

F. Carreiro (ILLC) Imperative programming with Python January 11th, 2012 4 / 18

Functions: recursion

Functions can call themselves in their definition.

calculates n * m (in a complicated way)

def multiply(n, m):

if n == 0:

return 0

else:

return m + multiply(n - 1, m)

How does the call stack look for multiply(2, 7) look like?

multiply
n 7→ 2, m 7→ 7
ret 7→ 7 + . . .

multiply
n 7→ 1, m 7→ 7
ret 7→ 7 + . . .

multiply
n 7→ 0, m 7→ 7
ret 7→ 0

F. Carreiro (ILLC) Imperative programming with Python January 11th, 2012 5 / 18

Functions: recursion

Functions can call themselves in their definition.

calculates n * m (in a complicated way)

def multiply(n, m):

if n == 0:

return 0

else:

return m + multiply(n - 1, m)

How does the call stack look for multiply(2, 7) look like?

multiply
n 7→ 2, m 7→ 7
ret 7→ 7 + . . .

multiply
n 7→ 1, m 7→ 7
ret 7→ 7 + . . .

multiply
n 7→ 0, m 7→ 7
ret 7→ 0

F. Carreiro (ILLC) Imperative programming with Python January 11th, 2012 5 / 18

Functions: recursion

Functions can call themselves in their definition.

calculates n * m (in a complicated way)

def multiply(n, m):

if n == 0:

return 0

else:

return m + multiply(n - 1, m)

How does the call stack look for multiply(2, 7) look like?

multiply
n 7→ 2, m 7→ 7
ret 7→ 7 + . . .

multiply
n 7→ 1, m 7→ 7
ret 7→ 7 + . . .

multiply
n 7→ 0, m 7→ 7
ret 7→ 0

F. Carreiro (ILLC) Imperative programming with Python January 11th, 2012 5 / 18

Functions: recursion

Functions can call themselves in their definition.

calculates n * m (in a complicated way)

def multiply(n, m):

if n == 0:

return 0

else:

return m + multiply(n - 1, m)

How does the call stack look for multiply(2, 7) look like?

multiply
n 7→ 2, m 7→ 7
ret 7→ 7 + . . .

multiply
n 7→ 1, m 7→ 7
ret 7→ 7 + . . .

multiply
n 7→ 0, m 7→ 7
ret 7→ 0

F. Carreiro (ILLC) Imperative programming with Python January 11th, 2012 5 / 18

Functions: recursion

Functions can call themselves in their definition.

calculates n * m (in a complicated way)

def multiply(n, m):

if n == 0:

return 0

else:

return m + multiply(n - 1, m)

How does the call stack look for multiply(2, 7) look like?

multiply
n 7→ 2, m 7→ 7
ret 7→ 7 + . . .

multiply
n 7→ 1, m 7→ 7
ret 7→ 7 + . . .

multiply
n 7→ 0, m 7→ 7
ret 7→ 0

F. Carreiro (ILLC) Imperative programming with Python January 11th, 2012 5 / 18

Functions: recursion

Functions can call themselves in their definition.

calculates n * m (in a complicated way)

def multiply(n, m):

if n == 0:

return 0

else:

return m + multiply(n - 1, m)

How does the call stack look for multiply(2, 7) look like?

multiply
n 7→ 2, m 7→ 7
ret 7→ 7 + . . .

multiply
n 7→ 1, m 7→ 7
ret 7→ 7 + 0 = 7

multiply
n 7→ 0, m 7→ 7
ret 7→ 0

F. Carreiro (ILLC) Imperative programming with Python January 11th, 2012 5 / 18

Functions: recursion

Functions can call themselves in their definition.

calculates n * m (in a complicated way)

def multiply(n, m):

if n == 0:

return 0

else:

return m + multiply(n - 1, m)

How does the call stack look for multiply(2, 7) look like?

multiply
n 7→ 2, m 7→ 7
ret 7→ 7 + 7 = 14

multiply
n 7→ 1, m 7→ 7
ret 7→ 7 + 0 = 7

multiply
n 7→ 0, m 7→ 7
ret 7→ 0

F. Carreiro (ILLC) Imperative programming with Python January 11th, 2012 5 / 18

Functions: recursion

It is crucial that the arguments of a recursive call are in some sense
‘smaller’ than the arguments of the function call itself.

What happens if we write multiply as follows

def multiply(n, m):

if n == 0:

return 0

else:

return m + multiply(n, m)

>>> multiply(2, 7)

Traceback (most recent call last):

File "<stdin >", line 1, in <module >

File "<stdin >", line 5, in multiply

File "<stdin >", line 5, in multiply

...

File "<stdin >", line 5, in multiply

RuntimeError: maximum recursion depth exceeded

Stack overflow!

F. Carreiro (ILLC) Imperative programming with Python January 11th, 2012 6 / 18

Functions: recursion

It is crucial that the arguments of a recursive call are in some sense
‘smaller’ than the arguments of the function call itself.

What happens if we write multiply as follows

def multiply(n, m):

if n == 0:

return 0

else:

return m + multiply(n, m)

>>> multiply(2, 7)

Traceback (most recent call last):

File "<stdin >", line 1, in <module >

File "<stdin >", line 5, in multiply

File "<stdin >", line 5, in multiply

...

File "<stdin >", line 5, in multiply

RuntimeError: maximum recursion depth exceeded

Stack overflow!

F. Carreiro (ILLC) Imperative programming with Python January 11th, 2012 6 / 18

Functions: recursion

You can also have many recursive calls

def fib(n):

if n == 0:

return n

else:

return fib(n - 1) + fib(n - 2)

Is it well defined?

No, what about fib(1) ?

def fib(n):

if n == 0 or n == 1:

return n

else:

return fib(n - 1) + fib(n - 2)

Is it well defined? Yes.

F. Carreiro (ILLC) Imperative programming with Python January 11th, 2012 7 / 18

Functions: recursion

You can also have many recursive calls

def fib(n):

if n == 0:

return n

else:

return fib(n - 1) + fib(n - 2)

Is it well defined? No, what about fib(1) ?

def fib(n):

if n == 0 or n == 1:

return n

else:

return fib(n - 1) + fib(n - 2)

Is it well defined? Yes.

F. Carreiro (ILLC) Imperative programming with Python January 11th, 2012 7 / 18

Functions: recursion

You can also have many recursive calls

def fib(n):

if n == 0:

return n

else:

return fib(n - 1) + fib(n - 2)

Is it well defined? No, what about fib(1) ?

def fib(n):

if n == 0 or n == 1:

return n

else:

return fib(n - 1) + fib(n - 2)

Is it well defined?

Yes.

F. Carreiro (ILLC) Imperative programming with Python January 11th, 2012 7 / 18

Functions: recursion

You can also have many recursive calls

def fib(n):

if n == 0:

return n

else:

return fib(n - 1) + fib(n - 2)

Is it well defined? No, what about fib(1) ?

def fib(n):

if n == 0 or n == 1:

return n

else:

return fib(n - 1) + fib(n - 2)

Is it well defined? Yes.

F. Carreiro (ILLC) Imperative programming with Python January 11th, 2012 7 / 18

Functions: recursion

The argument itself can increase. . .

def reverse_string(s):

return reverse_from_n(s, 0)

def reverse_from_n(s, i):

if i == len(s):

return ’’

else:

return reverse_from_n(s, i+1) + s[i]

But if you look closer len(s) - i is strictly decreasing.

F. Carreiro (ILLC) Imperative programming with Python January 11th, 2012 8 / 18

Functions: recursion

The argument itself can increase. . .

def reverse_string(s):

return reverse_from_n(s, 0)

def reverse_from_n(s, i):

if i == len(s):

return ’’

else:

return reverse_from_n(s, i+1) + s[i]

But if you look closer len(s) - i is strictly decreasing.

F. Carreiro (ILLC) Imperative programming with Python January 11th, 2012 8 / 18

Functions: recursion

Is the folowing function well defined (for n > 0)?

def collatz(n):

if n == 1:

return 0

elif n % 2 == 0:

return 1 + collatz(n/2)

else:

return 1 + collatz (3*n+1)

Who knows! It has been an open problem for years.

F. Carreiro (ILLC) Imperative programming with Python January 11th, 2012 9 / 18

Functions: recursion

Is the folowing function well defined (for n > 0)?

def collatz(n):

if n == 1:

return 0

elif n % 2 == 0:

return 1 + collatz(n/2)

else:

return 1 + collatz (3*n+1)

Who knows! It has been an open problem for years.

F. Carreiro (ILLC) Imperative programming with Python January 11th, 2012 9 / 18

The collatz conjecture
By the XKCD webcomic

F. Carreiro (ILLC) Imperative programming with Python January 11th, 2012 10 / 18

Repetition

Suppose we want to make a function that given n calculates
∑n

i=1 i .

def sum_up_to(n):

res = 1 + 2 + ... + n

return res

This is not a valid program, for many reasons.

Luckily, computers are very good at doing repetitive things. We have
the while statement to aid us.

def sum_up_to(n):

i = 1

v = 0

while i <= n:

v = v + i

i = i + 1

return v

The body gets repeated while the condition evaluates to true.

F. Carreiro (ILLC) Imperative programming with Python January 11th, 2012 11 / 18

Repetition

Suppose we want to make a function that given n calculates
∑n

i=1 i .

def sum_up_to(n):

res = 1 + 2 + ... + n

return res

This is not a valid program, for many reasons.

Luckily, computers are very good at doing repetitive things. We have
the while statement to aid us.

def sum_up_to(n):

i = 1

v = 0

while i <= n:

v = v + i

i = i + 1

return v

The body gets repeated while the condition evaluates to true.

F. Carreiro (ILLC) Imperative programming with Python January 11th, 2012 11 / 18

Repetition

Another handy construction is the for statement

It goes through so called ‘iterable’ objects, e.g. strings

>>> for letter in ’hello ’:

... print ’Give me an "’ + letter + ’"!’

...

Give me an "h"!

Give me an "e"!

Give me an "l"!

Give me an "l"!

Give me an "o"!

‘Lists’ are also iterable (we will see them later)

>>> range (3)

[0, 1, 2]

>>> for i in range (3):

... print i**2

...

0

1

4

F. Carreiro (ILLC) Imperative programming with Python January 11th, 2012 12 / 18

Repetition

Another handy construction is the for statement

It goes through so called ‘iterable’ objects, e.g. strings

>>> for letter in ’hello ’:

... print ’Give me an "’ + letter + ’"!’

...

Give me an "h"!

Give me an "e"!

Give me an "l"!

Give me an "l"!

Give me an "o"!

‘Lists’ are also iterable (we will see them later)

>>> range (3)

[0, 1, 2]

>>> for i in range (3):

... print i**2

...

0

1

4

F. Carreiro (ILLC) Imperative programming with Python January 11th, 2012 12 / 18

Repetition: while loops

while loops are a powerful but tricky construction.

They can run forever and make our program hang!

while True:

x = x + 1

ok, we would not write that, but what about. . .

x = int(raw_input ())

sum = 0

while x != 100:

sum = sum + x

x = x + 2

If x > 100 or x is odd this loop never ends.

F. Carreiro (ILLC) Imperative programming with Python January 11th, 2012 13 / 18

Repetition: while loops

while loops are a powerful but tricky construction.

They can run forever and make our program hang!

while True:

x = x + 1

ok, we would not write that, but what about. . .

x = int(raw_input ())

sum = 0

while x != 100:

sum = sum + x

x = x + 2

If x > 100 or x is odd this loop never ends.

F. Carreiro (ILLC) Imperative programming with Python January 11th, 2012 13 / 18

Repetition: while loops

while loops are a powerful but tricky construction.

They can run forever and make our program hang!

while True:

x = x + 1

ok, we would not write that, but what about. . .

x = int(raw_input ())

sum = 0

while x != 100:

sum = sum + x

x = x + 2

If x > 100 or x is odd this loop never ends.

F. Carreiro (ILLC) Imperative programming with Python January 11th, 2012 13 / 18

Repetition: loop invariants

A loop invariant is an invariant used to prove properties of loops.

For example, correctness and termination of loops.

Connected to pre and post-conditions.

E.g.: count(c:String, sentence:String) → res:Int

pre: True

post: res = |[1 : i ∈ {0, . . . , |sentence| − 1}, sentencei = c]|

Suppose we have the following implementation

def count(c, sentence):

i = 0; n = 0

while i < len(sentence):

if sentence[i] == c: n = n + 1

i = i + 1

return n

F. Carreiro (ILLC) Imperative programming with Python January 11th, 2012 14 / 18

Repetition: loop invariants

A loop invariant is an invariant used to prove properties of loops.

For example, correctness and termination of loops.

Connected to pre and post-conditions.

E.g.: count(c:String, sentence:String) → res:Int

pre: True

post: res = |[1 : i ∈ {0, . . . , |sentence| − 1}, sentencei = c]|

Suppose we have the following implementation

def count(c, sentence):

i = 0; n = 0

while i < len(sentence):

if sentence[i] == c: n = n + 1

i = i + 1

return n

F. Carreiro (ILLC) Imperative programming with Python January 11th, 2012 14 / 18

Repetition: loop invariants

A loop invariant is an invariant used to prove properties of loops.

For example, correctness and termination of loops.

Connected to pre and post-conditions.

E.g.: count(c:String, sentence:String) → res:Int

pre: True

post: res = |[1 : i ∈ {0, . . . , |sentence| − 1}, sentencei = c]|

Suppose we have the following implementation

def count(c, sentence):

i = 0; n = 0

while i < len(sentence):

if sentence[i] == c: n = n + 1

i = i + 1

return n

F. Carreiro (ILLC) Imperative programming with Python January 11th, 2012 14 / 18

Repetition: loop invariants

post: res = |[1 : i ∈ {0, . . . , |sentence| − 1}, sentencei = c]|
def count(c, sentence):

i = 0; n = 0

while i < len(sentence):

if sentence[i] == c: n = n + 1

i = i + 1

return n

Let C be our loop condition and I be our loop invariant, a theorem says:

C: i < |sentence|
I: 0 ≤ i ≤ |sentence| ∧ n = |[1 : x ∈ {0, . . . , i − 1}, sentencex = c]|

If we chose correctly our invariant, with ¬C ∧ I we should be able to prove
the postcondition.

F. Carreiro (ILLC) Imperative programming with Python January 11th, 2012 15 / 18

Repetition: loop invariants

post: res = |[1 : i ∈ {0, . . . , |sentence| − 1}, sentencei = c]|
def count(c, sentence):

i = 0; n = 0

while i < len(sentence):

if sentence[i] == c: n = n + 1

i = i + 1

return n

Let C be our loop condition and I be our loop invariant, a theorem says:

C:

i < |sentence|
I: 0 ≤ i ≤ |sentence| ∧ n = |[1 : x ∈ {0, . . . , i − 1}, sentencex = c]|

If we chose correctly our invariant, with ¬C ∧ I we should be able to prove
the postcondition.

F. Carreiro (ILLC) Imperative programming with Python January 11th, 2012 15 / 18

Repetition: loop invariants

post: res = |[1 : i ∈ {0, . . . , |sentence| − 1}, sentencei = c]|
def count(c, sentence):

i = 0; n = 0

while i < len(sentence):

if sentence[i] == c: n = n + 1

i = i + 1

return n

Let C be our loop condition and I be our loop invariant, a theorem says:

C: i < |sentence|
I:

0 ≤ i ≤ |sentence| ∧ n = |[1 : x ∈ {0, . . . , i − 1}, sentencex = c]|

If we chose correctly our invariant, with ¬C ∧ I we should be able to prove
the postcondition.

F. Carreiro (ILLC) Imperative programming with Python January 11th, 2012 15 / 18

Repetition: loop invariants

post: res = |[1 : i ∈ {0, . . . , |sentence| − 1}, sentencei = c]|
def count(c, sentence):

i = 0; n = 0

while i < len(sentence):

if sentence[i] == c: n = n + 1

i = i + 1

return n

Let C be our loop condition and I be our loop invariant, a theorem says:

C: i < |sentence|
I: 0 ≤ i ≤ |sentence| ∧ n = |[1 : x ∈ {0, . . . , i − 1}, sentencex = c]|

If we chose correctly our invariant, with ¬C ∧ I we should be able to prove
the postcondition.

F. Carreiro (ILLC) Imperative programming with Python January 11th, 2012 15 / 18

Repetition: loop invariants

post: res = |[1 : i ∈ {0, . . . , |sentence| − 1}, sentencei = c]|
def count(c, sentence):

i = 0; n = 0

while i < len(sentence):

if sentence[i] == c: n = n + 1

i = i + 1

return n

Let C be our loop condition and I be our loop invariant, a theorem says:

C: i < |sentence|
I: 0 ≤ i ≤ |sentence| ∧ n = |[1 : x ∈ {0, . . . , i − 1}, sentencex = c]|

If we chose correctly our invariant, with ¬C ∧ I we should be able to prove
the postcondition.

F. Carreiro (ILLC) Imperative programming with Python January 11th, 2012 15 / 18

Repetition: where’s the catch?

Are the for and while statements equivalent?

Short answer: in Python, yes.

Long answer:

In old languages like BASIC and Pascal the for statement was
meant to be used as for i = A to B: body . Modifications to i

in the body would not change the iteration.

In a while statement, the expression gets evaluated in every loop.

Some facts (check this out):

In theoretical computer science the difference between while and
for statements is kept.

Using what we have seen you can write any possible program!

But, if you don’t use while you can only write ‘some’ of them.

In fact, you could write any program using just ONE while .

F. Carreiro (ILLC) Imperative programming with Python January 11th, 2012 16 / 18

Repetition: where’s the catch?

Are the for and while statements equivalent?

Short answer: in Python, yes.

Long answer:

In old languages like BASIC and Pascal the for statement was
meant to be used as for i = A to B: body . Modifications to i

in the body would not change the iteration.

In a while statement, the expression gets evaluated in every loop.

Some facts (check this out):

In theoretical computer science the difference between while and
for statements is kept.

Using what we have seen you can write any possible program!

But, if you don’t use while you can only write ‘some’ of them.

In fact, you could write any program using just ONE while .

F. Carreiro (ILLC) Imperative programming with Python January 11th, 2012 16 / 18

Repetition: where’s the catch?

Are the for and while statements equivalent?

Short answer: in Python, yes.

Long answer:

In old languages like BASIC and Pascal the for statement was
meant to be used as for i = A to B: body . Modifications to i

in the body would not change the iteration.

In a while statement, the expression gets evaluated in every loop.

Some facts (check this out):

In theoretical computer science the difference between while and
for statements is kept.

Using what we have seen you can write any possible program!

But, if you don’t use while you can only write ‘some’ of them.

In fact, you could write any program using just ONE while .

F. Carreiro (ILLC) Imperative programming with Python January 11th, 2012 16 / 18

Repetition: where’s the catch?

Are the for and while statements equivalent?

Short answer: in Python, yes.

Long answer:

In old languages like BASIC and Pascal the for statement was
meant to be used as for i = A to B: body . Modifications to i

in the body would not change the iteration.

In a while statement, the expression gets evaluated in every loop.

Some facts (check this out):

In theoretical computer science the difference between while and
for statements is kept.

Using what we have seen you can write any possible program!

But, if you don’t use while you can only write ‘some’ of them.

In fact, you could write any program using just ONE while .

F. Carreiro (ILLC) Imperative programming with Python January 11th, 2012 16 / 18

Repetition: where’s the catch?

Are the for and while statements equivalent?

Short answer: in Python, yes.

Long answer:

In old languages like BASIC and Pascal the for statement was
meant to be used as for i = A to B: body . Modifications to i

in the body would not change the iteration.

In a while statement, the expression gets evaluated in every loop.

Some facts (check this out):

In theoretical computer science the difference between while and
for statements is kept.

Using what we have seen you can write any possible program!

But, if you don’t use while you can only write ‘some’ of them.

In fact, you could write any program using just ONE while .

F. Carreiro (ILLC) Imperative programming with Python January 11th, 2012 16 / 18

Repetition: where’s the catch?

Are the for and while statements equivalent?

Short answer: in Python, yes.

Long answer:

In old languages like BASIC and Pascal the for statement was
meant to be used as for i = A to B: body . Modifications to i

in the body would not change the iteration.

In a while statement, the expression gets evaluated in every loop.

Some facts (check this out):

In theoretical computer science the difference between while and
for statements is kept.

Using what we have seen you can write any possible program!

But, if you don’t use while you can only write ‘some’ of them.

In fact, you could write any program using just ONE while .

F. Carreiro (ILLC) Imperative programming with Python January 11th, 2012 16 / 18

Repetition: where’s the catch?

Are the for and while statements equivalent?

Short answer: in Python, yes.

Long answer:

In old languages like BASIC and Pascal the for statement was
meant to be used as for i = A to B: body . Modifications to i

in the body would not change the iteration.

In a while statement, the expression gets evaluated in every loop.

Some facts (check this out):

In theoretical computer science the difference between while and
for statements is kept.

Using what we have seen you can write any possible program!

But, if you don’t use while you can only write ‘some’ of them.

In fact, you could write any program using just ONE while .

F. Carreiro (ILLC) Imperative programming with Python January 11th, 2012 16 / 18

The estimation game

Building software in the real world is a lot about planning.

Planning is a lot about dealing with uncertainty and deadlines.

Your ability to do it right depends on: self-knowledge, experience in
the field.

Take out a piece of paper, write your name and prepare yourself. You’ll
have to answer a set of questions with an interval (lower and upper bound)

Average rainy days per year in Amsterdam → 188.

Total area of Argentina (in km2) → 2.780.400 km2 (#8th).

Average pages of an ILLC MoL thesis → 77.

F. Carreiro (ILLC) Imperative programming with Python January 11th, 2012 17 / 18

The estimation game

Building software in the real world is a lot about planning.

Planning is a lot about dealing with uncertainty and deadlines.

Your ability to do it right depends on: self-knowledge, experience in
the field.

Take out a piece of paper, write your name and prepare yourself. You’ll
have to answer a set of questions with an interval (lower and upper bound)

Average rainy days per year in Amsterdam → 188.

Total area of Argentina (in km2) → 2.780.400 km2 (#8th).

Average pages of an ILLC MoL thesis → 77.

F. Carreiro (ILLC) Imperative programming with Python January 11th, 2012 17 / 18

The estimation game

Building software in the real world is a lot about planning.

Planning is a lot about dealing with uncertainty and deadlines.

Your ability to do it right depends on: self-knowledge, experience in
the field.

Take out a piece of paper, write your name and prepare yourself. You’ll
have to answer a set of questions with an interval (lower and upper bound)

Average rainy days per year in Amsterdam →

188.

Total area of Argentina (in km2) → 2.780.400 km2 (#8th).

Average pages of an ILLC MoL thesis → 77.

F. Carreiro (ILLC) Imperative programming with Python January 11th, 2012 17 / 18

The estimation game

Building software in the real world is a lot about planning.

Planning is a lot about dealing with uncertainty and deadlines.

Your ability to do it right depends on: self-knowledge, experience in
the field.

Take out a piece of paper, write your name and prepare yourself. You’ll
have to answer a set of questions with an interval (lower and upper bound)

Average rainy days per year in Amsterdam → 188.

Total area of Argentina (in km2) → 2.780.400 km2 (#8th).

Average pages of an ILLC MoL thesis → 77.

F. Carreiro (ILLC) Imperative programming with Python January 11th, 2012 17 / 18

The estimation game

Building software in the real world is a lot about planning.

Planning is a lot about dealing with uncertainty and deadlines.

Your ability to do it right depends on: self-knowledge, experience in
the field.

Take out a piece of paper, write your name and prepare yourself. You’ll
have to answer a set of questions with an interval (lower and upper bound)

Average rainy days per year in Amsterdam → 188.

Total area of Argentina (in km2) →

2.780.400 km2 (#8th).

Average pages of an ILLC MoL thesis → 77.

F. Carreiro (ILLC) Imperative programming with Python January 11th, 2012 17 / 18

The estimation game

Building software in the real world is a lot about planning.

Planning is a lot about dealing with uncertainty and deadlines.

Your ability to do it right depends on: self-knowledge, experience in
the field.

Take out a piece of paper, write your name and prepare yourself. You’ll
have to answer a set of questions with an interval (lower and upper bound)

Average rainy days per year in Amsterdam → 188.

Total area of Argentina (in km2) → 2.780.400 km2 (#8th).

Average pages of an ILLC MoL thesis → 77.

F. Carreiro (ILLC) Imperative programming with Python January 11th, 2012 17 / 18

The estimation game

Building software in the real world is a lot about planning.

Planning is a lot about dealing with uncertainty and deadlines.

Your ability to do it right depends on: self-knowledge, experience in
the field.

Take out a piece of paper, write your name and prepare yourself. You’ll
have to answer a set of questions with an interval (lower and upper bound)

Average rainy days per year in Amsterdam → 188.

Total area of Argentina (in km2) → 2.780.400 km2 (#8th).

Average pages of an ILLC MoL thesis →

77.

F. Carreiro (ILLC) Imperative programming with Python January 11th, 2012 17 / 18

The estimation game

Building software in the real world is a lot about planning.

Planning is a lot about dealing with uncertainty and deadlines.

Your ability to do it right depends on: self-knowledge, experience in
the field.

Take out a piece of paper, write your name and prepare yourself. You’ll
have to answer a set of questions with an interval (lower and upper bound)

Average rainy days per year in Amsterdam → 188.

Total area of Argentina (in km2) → 2.780.400 km2 (#8th).

Average pages of an ILLC MoL thesis → 77.

F. Carreiro (ILLC) Imperative programming with Python January 11th, 2012 17 / 18

References

Chapters 3 and 5–7 of the book
http://greenteapress.com/thinkpython/thinkpython.html

Wikipedia article on ‘Call Stack’
http://en.wikipedia.org/wiki/Call_stack

Wikipedia article on ‘Collatz conjecture’
http://en.wikipedia.org/wiki/Collatz_conjecture

Wikipedia article on ‘Loop invariants’
http://en.wikipedia.org/wiki/Loop_invariant

F. Carreiro (ILLC) Imperative programming with Python January 11th, 2012 18 / 18

http://greenteapress.com/thinkpython/thinkpython.html
http://en.wikipedia.org/wiki/Call_stack
http://en.wikipedia.org/wiki/Collatz_conjecture
http://en.wikipedia.org/wiki/Loop_invariant

