
Imperative programming with Python
January 2012 project: Class #5

Facundo Carreiro

ILLC, University of Amsterdam

January 16th, 2012

Data structures

A data structure is a particular way of storing and organizing data in
a computer so that it can be used efficiently.

We have already stumbled upon one of them

>>> L = [2,3,5,7]

>>> type(L)

<type ’list’>

The List data type!

The values of the list type are sequences of elements a1, . . . , an,

Where each ai is a value of any type.

F. Carreiro (ILLC) Imperative programming with Python January 16th, 2012 2 / 18

Data structures

A data structure is a particular way of storing and organizing data in
a computer so that it can be used efficiently.

We have already stumbled upon one of them

>>> L = [2,3,5,7]

>>> type(L)

<type ’list’>

The List data type!

The values of the list type are sequences of elements a1, . . . , an,

Where each ai is a value of any type.

F. Carreiro (ILLC) Imperative programming with Python January 16th, 2012 2 / 18

Data structures: Lists

The easiest way to create a list is using the square brackets

L = []

is the empty list, and

L = [2, ’hello ’, [4, True], abs(-1)]

is an example of a nested list.

You can index them as you did with strings

>>> L[1]

’hello’

>>> L[2][1]

True

The len(·) function, as usual, returns the length of the list

>>> len(L)

4

F. Carreiro (ILLC) Imperative programming with Python January 16th, 2012 3 / 18

Data structures: Lists

The easiest way to create a list is using the square brackets

L = []

is the empty list, and

L = [2, ’hello ’, [4, True], abs(-1)]

is an example of a nested list.

You can index them as you did with strings

>>> L[1]

’hello’

>>> L[2][1]

True

The len(·) function, as usual, returns the length of the list

>>> len(L)

4

F. Carreiro (ILLC) Imperative programming with Python January 16th, 2012 3 / 18

Data structures: Lists

The easiest way to create a list is using the square brackets

L = []

is the empty list, and

L = [2, ’hello ’, [4, True], abs(-1)]

is an example of a nested list.

You can index them as you did with strings

>>> L[1]

’hello’

>>> L[2][1]

True

The len(·) function, as usual, returns the length of the list

>>> len(L)

4

F. Carreiro (ILLC) Imperative programming with Python January 16th, 2012 3 / 18

Data structures: Lists

Lists are mutable

>>> L[0] = 5*5

>>> L

[25, ’hello ’, [4, True], 1]

You can use + to concatenate lists

>>> [1,2] + [3,4] + [5]

[1, 2, 3, 4, 5]

You can use + and the append and insert methods to add

elements to a list (among others)

>>> L + [3]

[25, ’hello ’, [4, True], 1, 3]

>>> L.append (6)

>>> L

[25, ’hello ’, [4, True], 1, 6]

Question: where did the ’3’ go?

F. Carreiro (ILLC) Imperative programming with Python January 16th, 2012 4 / 18

Data structures: Lists

Lists are mutable

>>> L[0] = 5*5

>>> L

[25, ’hello ’, [4, True], 1]

You can use + to concatenate lists

>>> [1,2] + [3,4] + [5]

[1, 2, 3, 4, 5]

You can use + and the append and insert methods to add

elements to a list (among others)

>>> L + [3]

[25, ’hello ’, [4, True], 1, 3]

>>> L.append (6)

>>> L

[25, ’hello ’, [4, True], 1, 6]

Question: where did the ’3’ go?

F. Carreiro (ILLC) Imperative programming with Python January 16th, 2012 4 / 18

Data structures: Lists

Lists are mutable

>>> L[0] = 5*5

>>> L

[25, ’hello ’, [4, True], 1]

You can use + to concatenate lists

>>> [1,2] + [3,4] + [5]

[1, 2, 3, 4, 5]

You can use + and the append and insert methods to add

elements to a list (among others)

>>> L + [3]

[25, ’hello ’, [4, True], 1, 3]

>>> L.append (6)

>>> L

[25, ’hello ’, [4, True], 1, 6]

Question: where did the ’3’ go?

F. Carreiro (ILLC) Imperative programming with Python January 16th, 2012 4 / 18

Data structures: Lists

Lists are mutable

>>> L[0] = 5*5

>>> L

[25, ’hello ’, [4, True], 1]

You can use + to concatenate lists

>>> [1,2] + [3,4] + [5]

[1, 2, 3, 4, 5]

You can use + and the append and insert methods to add

elements to a list (among others)

>>> L + [3]

[25, ’hello ’, [4, True], 1, 3]

>>> L.append (6)

>>> L

[25, ’hello ’, [4, True], 1, 6]

Question: where did the ’3’ go?

F. Carreiro (ILLC) Imperative programming with Python January 16th, 2012 4 / 18

Data structures: Lists

There are several ways to delete an item from a list

If you know the index you can use del

>>> M = [’a’,’f’,’z’]

>>> del M[0]

>>> M

[’f’, ’z’]

or the pop(·) method

>>> M.pop(1)

’z’

>>> M

[’f’]

If you know the element but not the index you can use the
remove(·) method to remove the first occurrence

>>> M = [’a’,’b’,’b’,’c’]

>>> M.remove(’b’)

>>> M

[’a’, ’b’, ’c’]

F. Carreiro (ILLC) Imperative programming with Python January 16th, 2012 5 / 18

Data structures: Lists

There are several ways to delete an item from a list
If you know the index you can use del

>>> M = [’a’,’f’,’z’]

>>> del M[0]

>>> M

[’f’, ’z’]

or the pop(·) method

>>> M.pop(1)

’z’

>>> M

[’f’]

If you know the element but not the index you can use the
remove(·) method to remove the first occurrence

>>> M = [’a’,’b’,’b’,’c’]

>>> M.remove(’b’)

>>> M

[’a’, ’b’, ’c’]

F. Carreiro (ILLC) Imperative programming with Python January 16th, 2012 5 / 18

Data structures: Lists

There are several ways to delete an item from a list
If you know the index you can use del

>>> M = [’a’,’f’,’z’]

>>> del M[0]

>>> M

[’f’, ’z’]

or the pop(·) method

>>> M.pop(1)

’z’

>>> M

[’f’]

If you know the element but not the index you can use the
remove(·) method to remove the first occurrence

>>> M = [’a’,’b’,’b’,’c’]

>>> M.remove(’b’)

>>> M

[’a’, ’b’, ’c’]

F. Carreiro (ILLC) Imperative programming with Python January 16th, 2012 5 / 18

Data structures: Lists

Lists can be iterated, it is one of the most common operations

>>> range (5)

[0, 1, 2, 3, 4]

>>> acumm = 0

>>> for i in range (5):

... acumm += i

>>> acumm

10

The slice ([n:m]) operator also works with them

>>> L[:2]

[25, ’hello ’]

Suggested HW: check the Python documentation for Lists.

F. Carreiro (ILLC) Imperative programming with Python January 16th, 2012 6 / 18

Data structures: Lists

Lists can be iterated, it is one of the most common operations

>>> range (5)

[0, 1, 2, 3, 4]

>>> acumm = 0

>>> for i in range (5):

... acumm += i

>>> acumm

10

The slice ([n:m]) operator also works with them

>>> L[:2]

[25, ’hello ’]

Suggested HW: check the Python documentation for Lists.

F. Carreiro (ILLC) Imperative programming with Python January 16th, 2012 6 / 18

Data structures: Lists and strings

Strings are sequences of characters

But that is not the same as a list of characters

>>> s = ’hello ’

>>> l = [’h’,’e’,’l’,’l’,’o’]

>>> type(s)

<type ’str’>

>>> type(l)

<type ’list’>

>>> print s, l

hello [’h’, ’e’, ’l’, ’l’, ’o’]

The list(·) function converts strings to lists

>>> list(s)

[’h’, ’e’, ’l’, ’l’, ’o’]

F. Carreiro (ILLC) Imperative programming with Python January 16th, 2012 7 / 18

Data structures: Lists and strings

Strings are sequences of characters

But that is not the same as a list of characters

>>> s = ’hello ’

>>> l = [’h’,’e’,’l’,’l’,’o’]

>>> type(s)

<type ’str’>

>>> type(l)

<type ’list’>

>>> print s, l

hello [’h’, ’e’, ’l’, ’l’, ’o’]

The list(·) function converts strings to lists

>>> list(s)

[’h’, ’e’, ’l’, ’l’, ’o’]

F. Carreiro (ILLC) Imperative programming with Python January 16th, 2012 7 / 18

Data structures: Lists and strings

A much more interesting effect can be achieved using the split

string method

>>> ’what a wonderful world’.split()

[’what’, ’a’, ’wonderful ’, ’world ’]

Keep this one in mind, it’s very useful.
Suggested HW: execute help(’any string’.split)

To do the inverse, you use the join function of the string module

>>> import string

>>> string.join([’put’, ’us’, ’toghether ’])

’put us toghether ’

>>> string.join([’first’,’second ’,’third ’],’, ’)

’first , second , third ’

F. Carreiro (ILLC) Imperative programming with Python January 16th, 2012 8 / 18

Data structures: Lists and strings

A much more interesting effect can be achieved using the split

string method

>>> ’what a wonderful world’.split()

[’what’, ’a’, ’wonderful ’, ’world ’]

Keep this one in mind, it’s very useful.
Suggested HW: execute help(’any string’.split)

To do the inverse, you use the join function of the string module

>>> import string

>>> string.join([’put’, ’us’, ’toghether ’])

’put us toghether ’

>>> string.join([’first’,’second ’,’third ’],’, ’)

’first , second , third ’

F. Carreiro (ILLC) Imperative programming with Python January 16th, 2012 8 / 18

The Object Model

We said that variables referred to values, but actually that is not true.

Variables refer to objects.

Objects are abstractions for data, they have
1 A type
2 An identity (can be though of as: “the place in the memory”)
3 A value

Let’s analyze how the following piece of code acts

a = ’banana ’

b = ’banana ’

The is operator compares objects and tells us we are in the second case.

>>> a is b

True

>>> a == b

True

F. Carreiro (ILLC) Imperative programming with Python January 16th, 2012 9 / 18

The Object Model

We said that variables referred to values, but actually that is not true.

Variables refer to objects.

Objects are abstractions for data, they have
1 A type
2 An identity (can be though of as: “the place in the memory”)
3 A value

Let’s analyze how the following piece of code acts

a = ’banana ’

b = ’banana ’

The is operator compares objects and tells us we are in the second case.

>>> a is b

True

>>> a == b

True

F. Carreiro (ILLC) Imperative programming with Python January 16th, 2012 9 / 18

The Object Model

We said that variables referred to values, but actually that is not true.

Variables refer to objects.

Objects are abstractions for data, they have
1 A type
2 An identity (can be though of as: “the place in the memory”)
3 A value

Let’s analyze how the following piece of code acts

a = ’banana ’

b = ’banana ’

The is operator compares objects and tells us we are in the second case.

>>> a is b

True

>>> a == b

True

F. Carreiro (ILLC) Imperative programming with Python January 16th, 2012 9 / 18

The Object Model

Let’s see what happens with Lists

a = [1, 2, 3]

b = [1, 2, 3]

We use the is and == operators to test it

>>> a is b

False

>>> a == b

True

What happens in the following case?

a = [1, 2, 3]

b = a

>>> a is b

True

>>> a == b

True

a and b refer to the same object. They are called aliases.

F. Carreiro (ILLC) Imperative programming with Python January 16th, 2012 10 / 18

The Object Model

Let’s see what happens with Lists

a = [1, 2, 3]

b = [1, 2, 3]

We use the is and == operators to test it

>>> a is b

False

>>> a == b

True

What happens in the following case?

a = [1, 2, 3]

b = a

>>> a is b

True

>>> a == b

True

a and b refer to the same object. They are called aliases.

F. Carreiro (ILLC) Imperative programming with Python January 16th, 2012 10 / 18

The Object Model

Let’s see what happens with Lists

a = [1, 2, 3]

b = [1, 2, 3]

We use the is and == operators to test it

>>> a is b

False

>>> a == b

True

What happens in the following case?

a = [1, 2, 3]

b = a

>>> a is b

True

>>> a == b

True

a and b refer to the same object. They are called aliases.

F. Carreiro (ILLC) Imperative programming with Python January 16th, 2012 10 / 18

The Object Model

Let’s see what happens with Lists

a = [1, 2, 3]

b = [1, 2, 3]

We use the is and == operators to test it

>>> a is b

False

>>> a == b

True

What happens in the following case?

a = [1, 2, 3]

b = a

>>> a is b

True

>>> a == b

True

a and b refer to the same object. They are called aliases.

F. Carreiro (ILLC) Imperative programming with Python January 16th, 2012 10 / 18

The Object Model

Let’s see what happens with Lists

a = [1, 2, 3]

b = [1, 2, 3]

We use the is and == operators to test it

>>> a is b

False

>>> a == b

True

What happens in the following case?

a = [1, 2, 3]

b = a

>>> a is b

True

>>> a == b

True

a and b refer to the same object. They are called aliases.

F. Carreiro (ILLC) Imperative programming with Python January 16th, 2012 10 / 18

The Object Model: aliasing

I

I
I
I
I

a = ’hello’; t = [1,2,3]; u = [1,2,3]

u = t

t[0] = 20

b = a

a = a + ’ world’

Variables Objects Values

hello

[1, 2, 3]

[20, 2, 3]

a

b

t

u

hello world

F. Carreiro (ILLC) Imperative programming with Python January 16th, 2012 11 / 18

The Object Model: aliasing

I

I

I
I
I

a = ’hello’; t = [1,2,3]; u = [1,2,3]

u = t

t[0] = 20

b = a

a = a + ’ world’

Variables Objects Values

hello

[1, 2, 3]

[20, 2, 3]

a

b

t

u

hello world

s1

L1

L2

F. Carreiro (ILLC) Imperative programming with Python January 16th, 2012 11 / 18

The Object Model: aliasing

I
I

I

I
I

a = ’hello’; t = [1,2,3]; u = [1,2,3]

u = t

t[0] = 20

b = a

a = a + ’ world’

Variables Objects Values

hello

[1, 2, 3]

[20, 2, 3]

a

b

t

u

hello world

s1

L2

F. Carreiro (ILLC) Imperative programming with Python January 16th, 2012 11 / 18

The Object Model: aliasing

I
I
I

I

I

a = ’hello’; t = [1,2,3]; u = [1,2,3]

u = t

t[0] = 20

b = a

a = a + ’ world’

Variables Objects Values

hello

[1, 2, 3]

[20, 2, 3]

a

b

t

u

hello world

s1

L2

F. Carreiro (ILLC) Imperative programming with Python January 16th, 2012 11 / 18

The Object Model: aliasing

I
I
I
I

I

a = ’hello’; t = [1,2,3]; u = [1,2,3]

u = t

t[0] = 20

b = a

a = a + ’ world’

Variables Objects Values

hello

[1, 2, 3]

[20, 2, 3]

a

b

t

u

hello world

s1

L2

F. Carreiro (ILLC) Imperative programming with Python January 16th, 2012 11 / 18

The Object Model: aliasing

I
I
I
I
I

a = ’hello’; t = [1,2,3]; u = [1,2,3]

u = t

t[0] = 20

b = a

a = a + ’ world’

Variables Objects Values

hello

[1, 2, 3]

[20, 2, 3]

a

b

t

u

hello world

s1

L2

s2

F. Carreiro (ILLC) Imperative programming with Python January 16th, 2012 11 / 18

Data Structures: tuples

Tuples are fixed length, immutable sequences of items.

You use commas and (optionally) parentheses to create them

>>> t = (55, ’text’, 8)

>>> u = (4,)

>>> v = (4)

>>> type(t)

<type ’tuple’>

>>> type(u)

<type ’tuple’>

>>> type(v)

<type ’int’>

Observe that to get a 1-tuple we need to add an extra comma.

They can be indexed, iterated and sliced just as lists and strings.

F. Carreiro (ILLC) Imperative programming with Python January 16th, 2012 12 / 18

Data Structures: tuples

Accessing each item of a tuple could be annoying

t = [(1,2,3), (’a’,’b’,’c’)]

for e in t:

x = e[0]

y = e[1]

z = e[2]

print x + y + z

Luckily, tuples can be handled in a very handy way

t = [(1,2,3), (’a’,’b’,’c’)]

for (x,y,z) in t:

print x + y + z

addr = ’monty@python.org’

(uname , domain) = addr.split(’@’)

Side note: Functional languages usually have an extended version of
this phenomenon called pattern matching.

F. Carreiro (ILLC) Imperative programming with Python January 16th, 2012 13 / 18

Data Structures: tuples

Accessing each item of a tuple could be annoying

t = [(1,2,3), (’a’,’b’,’c’)]

for e in t:

x = e[0]

y = e[1]

z = e[2]

print x + y + z

Luckily, tuples can be handled in a very handy way

t = [(1,2,3), (’a’,’b’,’c’)]

for (x,y,z) in t:

print x + y + z

addr = ’monty@python.org’

(uname , domain) = addr.split(’@’)

Side note: Functional languages usually have an extended version of
this phenomenon called pattern matching.

F. Carreiro (ILLC) Imperative programming with Python January 16th, 2012 13 / 18

Data Structures: tuples

Accessing each item of a tuple could be annoying

t = [(1,2,3), (’a’,’b’,’c’)]

for e in t:

x = e[0]

y = e[1]

z = e[2]

print x + y + z

Luckily, tuples can be handled in a very handy way

t = [(1,2,3), (’a’,’b’,’c’)]

for (x,y,z) in t:

print x + y + z

addr = ’monty@python.org’

(uname , domain) = addr.split(’@’)

Side note: Functional languages usually have an extended version of
this phenomenon called pattern matching.

F. Carreiro (ILLC) Imperative programming with Python January 16th, 2012 13 / 18

Data Structures: List Comprehensions

Python has an awesome way of constructing lists called list
comprehension. They mimic mathematical definitions such as

{f (x) | x ∈ C ∧ condition holds(x)}

Some examples

>>> [x**2 for x in range (10)]

[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]

>>> words = [’dog’, ’cat’, ’yellow ’]

>>> [(w, len(w)) for w in words if ’a’ not in w]

[(’dog’, 3), (’yellow ’, 6)]

Suggested HW: Check the reference for more involved examples.

F. Carreiro (ILLC) Imperative programming with Python January 16th, 2012 14 / 18

Data Structures: List Comprehensions

Python has an awesome way of constructing lists called list
comprehension. They mimic mathematical definitions such as

{f (x) | x ∈ C ∧ condition holds(x)}

Some examples

>>> [x**2 for x in range (10)]

[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]

>>> words = [’dog’, ’cat’, ’yellow ’]

>>> [(w, len(w)) for w in words if ’a’ not in w]

[(’dog’, 3), (’yellow ’, 6)]

Suggested HW: Check the reference for more involved examples.

F. Carreiro (ILLC) Imperative programming with Python January 16th, 2012 14 / 18

Data Structures: Dictionaries

A dictionary is a group of (key 7→ value) assignments.

The empty dictionary may be created with {} or dict(·) .

>>> d1 = {}

>>> d2 = dict()

You can create a dictionary with some predefined assignments.

d = {1:’mom’, 2:’god’,

(25 ,17):"[...] And you will know that my name is the Lord \

when I lay my vengeance upon thee."}

1 7→ mom
2 7→ god

(25, 17) 7→ [...] And you will know that my name. . .

F. Carreiro (ILLC) Imperative programming with Python January 16th, 2012 15 / 18

Data Structures: Dictionaries

A dictionary is a group of (key 7→ value) assignments.

The empty dictionary may be created with {} or dict(·) .

>>> d1 = {}

>>> d2 = dict()

You can create a dictionary with some predefined assignments.

d = {1:’mom’, 2:’god’,

(25 ,17):"[...] And you will know that my name is the Lord \

when I lay my vengeance upon thee."}

1 7→ mom
2 7→ god

(25, 17) 7→ [...] And you will know that my name. . .

F. Carreiro (ILLC) Imperative programming with Python January 16th, 2012 15 / 18

Data Structures: Dictionaries

The has key(·) method tells you if the key is defined

>>> d.has_key (1)

True

You can ‘index’ the dictionary using it’s keys

>>> d[1]

’mom ’

>>> d[0]

KeyError: 0

You can also create or update a key-value pair using [·] .

>>> d[1] = True >>> d[0] = ’mom ’

Deletion is achieved through the del statement as in lists.

F. Carreiro (ILLC) Imperative programming with Python January 16th, 2012 16 / 18

Data Structures: Dictionaries

The has key(·) method tells you if the key is defined

>>> d.has_key (1)

True

You can ‘index’ the dictionary using it’s keys

>>> d[1]

’mom ’

>>> d[0]

KeyError: 0

You can also create or update a key-value pair using [·] .

>>> d[1] = True >>> d[0] = ’mom ’

Deletion is achieved through the del statement as in lists.

F. Carreiro (ILLC) Imperative programming with Python January 16th, 2012 16 / 18

Data Structures: Dictionaries

The has key(·) method tells you if the key is defined

>>> d.has_key (1)

True

You can ‘index’ the dictionary using it’s keys

>>> d[1]

’mom ’

>>> d[0]

KeyError: 0

You can also create or update a key-value pair using [·] .

>>> d[1] = True >>> d[0] = ’mom ’

Deletion is achieved through the del statement as in lists.

F. Carreiro (ILLC) Imperative programming with Python January 16th, 2012 16 / 18

Data Structures: Dictionaries

The has key(·) method tells you if the key is defined

>>> d.has_key (1)

True

You can ‘index’ the dictionary using it’s keys

>>> d[1]

’mom ’

>>> d[0]

KeyError: 0

You can also create or update a key-value pair using [·] .

>>> d[1] = True >>> d[0] = ’mom ’

Deletion is achieved through the del statement as in lists.

F. Carreiro (ILLC) Imperative programming with Python January 16th, 2012 16 / 18

Data Structures: Dictionaries

The has key(·) method tells you if the key is defined

>>> d.has_key (1)

True

You can ‘index’ the dictionary using it’s keys

>>> d[1]

’mom ’

>>> d[0]

KeyError: 0

You can also create or update a key-value pair using [·] .

>>> d[1] = True >>> d[0] = ’mom ’

Deletion is achieved through the del statement as in lists.

F. Carreiro (ILLC) Imperative programming with Python January 16th, 2012 16 / 18

Data Structures: Dictionaries

The has key(·) method tells you if the key is defined

>>> d.has_key (1)

True

You can ‘index’ the dictionary using it’s keys

>>> d[1]

’mom ’

>>> d[0]

KeyError: 0

You can also create or update a key-value pair using [·] .

>>> d[1] = True >>> d[0] = ’mom ’

Deletion is achieved through the del statement as in lists.

F. Carreiro (ILLC) Imperative programming with Python January 16th, 2012 16 / 18

Data Structures: Dictionaries

The has key(·) method tells you if the key is defined

>>> d.has_key (1)

True

You can ‘index’ the dictionary using it’s keys

>>> d[1]

’mom ’

>>> d[0]

KeyError: 0

You can also create or update a key-value pair using [·] .

>>> d[1] = True >>> d[0] = ’mom ’

Deletion is achieved through the del statement as in lists.

F. Carreiro (ILLC) Imperative programming with Python January 16th, 2012 16 / 18

Data Structures: Dictionaries

The has key(·) method tells you if the key is defined

>>> d.has_key (1)

True

You can ‘index’ the dictionary using it’s keys

>>> d[1]

’mom ’

>>> d[0]

KeyError: 0

You can also create or update a key-value pair using [·] .

>>> d[1] = True

>>> d[0] = ’mom ’

Deletion is achieved through the del statement as in lists.

F. Carreiro (ILLC) Imperative programming with Python January 16th, 2012 16 / 18

Data Structures: Dictionaries

The has key(·) method tells you if the key is defined

>>> d.has_key (1)

True

You can ‘index’ the dictionary using it’s keys

>>> d[1]

’mom ’

>>> d[0]

KeyError: 0

You can also create or update a key-value pair using [·] .

>>> d[1] = True >>> d[0] = ’mom ’

Deletion is achieved through the del statement as in lists.

F. Carreiro (ILLC) Imperative programming with Python January 16th, 2012 16 / 18

Data Structures: Dictionaries

The has key(·) method tells you if the key is defined

>>> d.has_key (1)

True

You can ‘index’ the dictionary using it’s keys

>>> d[1]

’mom ’

>>> d[0]

KeyError: 0

You can also create or update a key-value pair using [·] .

>>> d[1] = True >>> d[0] = ’mom ’

Deletion is achieved through the del statement as in lists.

F. Carreiro (ILLC) Imperative programming with Python January 16th, 2012 16 / 18

Data Structures: Dictionaries

The keys , values and iteritems methods let you iterate over
the dictionary

>>> knights = {’gallahad ’: ’the pure’, ’robin’: ’the brave’}

>>> print knights.keys()

[’gallahad ’, ’robin’]

>>> knights.values ()

[’the pure’, ’the brave’]

Again, we can use pattern matching with tuples

>>> for (k, v) in knights.iteritems ():

... print k + ’, so called ’ + v

...

gallahad , so called the pure

robin , so called the brave

F. Carreiro (ILLC) Imperative programming with Python January 16th, 2012 17 / 18

References

Chapters 10–12 of the book
http://greenteapress.com/thinkpython/thinkpython.html

List Methods
http://docs.python.org/tutorial/datastructures.html#more-on-lists

Python Data Model
http://docs.python.org/reference/datamodel.html

List Comprehensions
http://docs.python.org/tutorial/datastructures.html#list-comprehensions

Dictionaries
http://docs.python.org/tutorial/datastructures.html#dictionaries

F. Carreiro (ILLC) Imperative programming with Python January 16th, 2012 18 / 18

http://greenteapress.com/thinkpython/thinkpython.html
http://docs.python.org/tutorial/datastructures.html#more-on-lists
http://docs.python.org/reference/datamodel.html
http://docs.python.org/tutorial/datastructures.html#list-comprehensions
http://docs.python.org/tutorial/datastructures.html#dictionaries

