
Imperative programming with Python
January 2012 project: Class #7

Facundo Carreiro

ILLC, University of Amsterdam

January 17th, 2012

Polymorphism

Let’s write a function that counts the number of occurrences of an
element in a list (once again)

def count(e, l):

c = 0

for i in l:

if e == i:

c = c + 1

return c

>>> count(1, [4,1,’a’ ,1])

2

F. Carreiro (ILLC) Imperative programming with Python January 17th, 2012 2 / 18

Polymorphism

Suppose we mess up and use it with a string

>>> count(’a’, ’hella good’)

1

...or with tuples

>>> count(7, (4,7,9,2,5,7,2,7))

3

A function is called polymorphic when it works (as intended) with
several different data types.

If the assumptions on the types are properly specified, it is an
important way to reuse code and encapsulate an action.

F. Carreiro (ILLC) Imperative programming with Python January 17th, 2012 3 / 18

Polymorphism

In this case, what are we asking e and l for?

def count(e, l):

c = 0

for i in l:

if e == i:

c = c + 1

return c

l should be iterable.

e should be comparable.

F. Carreiro (ILLC) Imperative programming with Python January 17th, 2012 4 / 18

Inheritance

class Log(object):

def __init__(self):

print ’Initializing Log’

self.log = []

def add(self , m):

self.log.append(m)

def see(self):

print self.log

Inheritance is a feature to generate new classes by specializing
existing ones.

class DebugLog(Log):

def add(self , m):

print m

Log.add(self , m)

The DebugLog class ‘inherits’ all attributes and methods from Log .

It defines an ‘is a’ subtype relationship.

F. Carreiro (ILLC) Imperative programming with Python January 17th, 2012 5 / 18

Inheritance: method resolution order

When calling a method, the most specific one gets executed.

>>> d = DebugLog ()

Initializing Log

When we create a DebugLog object Log. init gets called.

>>> d.add(’Something happened ’)

Something happened

DebugLog.add overrides the base method Log.add .

>>> d.see()

[’Something happened ’]

As DebugLog.see doesn’t exist, Log.see gets executed.

F. Carreiro (ILLC) Imperative programming with Python January 17th, 2012 6 / 18

Inheritance: a slight variant

Suppose we want to show a message when we start logging

class DebugLog(Log):

def __init__(self):

print ’Logging started at ’ + time.strftime(’%H:%M:%S’)

...

>>> d = DebugLog ()

Logging started at 19:32:50

Then, somewhere in our code, we add a line to the log

>>> d.add(’Log this line’)

Log this line

Traceback (most recent call last):

File "<stdin >", line 1, in <module >

File "<stdin >", line 4, in add

File "<stdin >", line 7, in add

AttributeError: ’DebugLog ’ object has no attribute ’log’

The log attribute doesn’t exist because Log was not initialized!

Suggested HW: Fix it.

F. Carreiro (ILLC) Imperative programming with Python January 17th, 2012 7 / 18

Inheritance: a more complex example

class FileLog(Log):

def __init__(self , fn):

print ’Initializing FileLog ’

Log.__init__(self)

self.filename = fn

reload log into memory

f = open(self.filename)

self.log = [line.strip() for line in f]

f.close()

def add(self , m):

Log.add(self , m)

f = open(self.filename , ’a’)

f.write(m + "\n")

f.close()

In this case, the base class is properly initialized

>>> f = FileLog(’log.txt’)

Initializing FileLog

Initializing Log

F. Carreiro (ILLC) Imperative programming with Python January 17th, 2012 8 / 18

Inheritance: a more complex example (v2)

Look at
reload log into memory

f = open(self.filename)

self.log = [line.strip() for line in f]

f.close()

Design discussion: is it ok to access self.log directly?

It is better if we use Log.add .

class FileLog(Log):

def __init__(self , fn):

print ’Initializing FileLog ’

Log.__init__(self)

self.filename = fn

reload log into memory

f = open(self.filename)

for line in f:

Log.add(self , line.strip ())

f.close()

...

F. Carreiro (ILLC) Imperative programming with Python January 17th, 2012 9 / 18

Exceptions

We have seen that many things could go wrong during runtime

>>> f = open(’inexistent.txt’)

IOError: [Errno 2] No such file or directory: ’inexistent.txt’

>>> int(’not an int’)

ValueError: invalid literal for int() with base 10: ’not an int’

>>> 10 * (1/0)

ZeroDivisionError: integer division or modulo by zero

>>> 4 + spam*3

NameError: name ’spam’ is not defined

>>> ’2’ + 2

TypeError: cannot concatenate ’str’ and ’int’ objects

F. Carreiro (ILLC) Imperative programming with Python January 17th, 2012 10 / 18

Exceptions

These errors are examples of exceptions

The represent (not necessarily fatal) errors

Exception are of a special type called Exception

IOError , ValueError , etc. inherit from Exception

F. Carreiro (ILLC) Imperative programming with Python January 17th, 2012 11 / 18

Exceptions

Exceptions (instances) are thrown

Until someone catches them

For that, we use the try and except statements

try:

f = open(’somefile.txt’)

except:

print ’Something bad happened ’

things continue even if an exception took place

The except: statement catches all exceptions

F. Carreiro (ILLC) Imperative programming with Python January 17th, 2012 12 / 18

Exceptions

We can be more picky about which exception to handle

try:

f = open(’somefile.txt’)

v = int(f.readline ())

except IOError:

print ’Something bad happened with the file’

except ValueError:

print ’Something bad happened while converting the line’

except:

print "Something bad happened and we didn’t expect it"

This works similar to the if...elif...else construction.

F. Carreiro (ILLC) Imperative programming with Python January 17th, 2012 13 / 18

Exceptions

Don’t forget that exceptions are objects

We get more information about the errors by inspecting them

try:

f = open(’somefile.txt’)

v = int(f.readline ())

except IOError , ioe:

print ’Error with file: %s’ % ioe.filename

except ValueError , ve:

print ’Error converting: %s’ % ve.args

except Exception , e:

print "Error: %s" % e

F. Carreiro (ILLC) Imperative programming with Python January 17th, 2012 14 / 18

Exceptions are thrown

Exception catching can be deferred

They go up the call stack making every function to return immediately

def process_file(fn):

try:

f = open(fn)

v = int(f.readline ())

f.close()

except ValueError:

v = -1

return v

main entry point

try:

v = process_file(’somefile.txt’)

except IOError:

print ’There is some problem with the file’

exit the program using the sys module

sys.exit()

do something with v

F. Carreiro (ILLC) Imperative programming with Python January 17th, 2012 15 / 18

Exceptions are thrown

You throw an exception using the raise statement

def get_color_by_name(c):

if c == ’red’:

return (1,0,0)

elif c == ’green’:

return (0,1,0)

elif c == ’blue’:

return (0,0,1)

else:

raise KeyError(’Color is not known ’)

Design discussion: this function is not nice, why?

F. Carreiro (ILLC) Imperative programming with Python January 17th, 2012 16 / 18

Pure & virtual methods

Virtual methods are methods that can be overridden by a subclass

Every method is virtual in Python

Pure virtual methods are methods that should be implemented by a
subclass. Then can be ‘simulated’ in Python.

class Animal(object):

def __init__(self , n):

self.name = n

def talk(self):

raise NotImplementedError

class Cat(Animal):

def talk(self):

print self.name + ’says meooww!’

class Dog(Animal):

def talk(self):

print self.name + ’says woof woof!’

F. Carreiro (ILLC) Imperative programming with Python January 17th, 2012 17 / 18

References

Chapters 17 and 18 of the book
http://greenteapress.com/thinkpython/thinkpython.html

Errors and exceptions
http://docs.python.org/tutorial/errors.html

Built-in exceptions
http://docs.python.org/library/exceptions.html

String formatting
http://docs.python.org/library/stdtypes.html#string-formatting

F. Carreiro (ILLC) Imperative programming with Python January 17th, 2012 18 / 18

http://greenteapress.com/thinkpython/thinkpython.html
http://docs.python.org/tutorial/errors.html
http://docs.python.org/library/exceptions.html
http://docs.python.org/library/stdtypes.html#string-formatting

