Imperative programming with Python
January 2012 project: Class #7

Facundo Carreiro

ILLC, University of Amsterdam

January 17th, 2012

-
Polymorphism

@ Let’s write a function that counts the number of occurrences of an
element in a list (once again)

def count (e, 1):

c =0
for i in 1:
if e == 1i:

c =c¢c + 1
return c

>>> count (1, [4,1,’a’,1])
2

F. Carreiro (ILLC) Imperative programming with Python January 17th, 2012 2 /18

-
Polymorphism

@ Suppose we mess up and use it with a string
>>> count(’a’, ’hellajgood’)
1
@ ...or with tuples
>>> count (7, (4,7,9,2,5,7,2,7))
3

@ A function is called polymorphic when it works (as intended) with
several different data types.

o If the assumptions on the types are properly specified, it is an
important way to reuse code and encapsulate an action.

F. Carreiro (ILLC) Imperative programming with Python January 17th, 2012 3/18

-
Polymorphism

@ In this case, what are we asking e and 1 for?

def count (e, 1):

c =20
for i in 1:
if e == 1i:

c =c¢c + 1
return c

@ 1 should be iterable.

@ e should be comparable.

F. Carreiro (ILLC) Imperative programming with Python January 17th, 2012 4/18

T —
Inheritance

class Log(object):
def init__(self):

print ’Imnitializing, Log’
self.log = []

def add(self, m):
self.log.append (m)

def see(self):
print self.log

@ Inheritance is a feature to generate new classes by specializing
existing ones.

class DebugLog(Log):
def add(self, m):
print m
Log.add (self, m)
@ The DebugLog class ‘inherits’ all attributes and methods from Log .

@ It defines an ‘is a’ subtype relationship.

F. Carreiro (ILLC) Imperative programming with Python January 17th, 2012 5/18

T —
Inheritance: method resolution order

@ When calling a method, the most specific one gets executed.

>>> d = DebugLog ()
Initializing Log

© When we create a DebugLog object Log.__init__ gets called.

>>> d.add(’Something happened’)
Something happened

@ Debuglog.add overrides the base method Log.add .

>>> d.see()
[’Something happened’]

@ As Debuglog.see doesn't exist, Log.see gets executed.

F. Carreiro (ILLC) Imperative programming with Python January 17th, 2012 6 /18

-
Inheritance: a slight variant

@ Suppose we want to show a message when we start logging

class DebugLog(Log):
def __init__(self):
print ’Logging,startedjat,’ + time.strftime(’%H:%M:%S’)

>>> d = DebugLog ()
Logging started at 19:32:50

@ Then, somewhere in our code, we add a line to the log

>>> d.add(’Logythis line’)
Log this 1line
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "<stdin>", line 4, in add
File "<stdin>", line 7, in add
AttributeError: ’Debuglog’ object has no attribute ’log’

@ The log attribute doesn't exist because Log was not initialized!
@ Suggested HW: Fix it.

F. Carreiro (ILLC) Imperative programming with Python January 17th, 2012 7 /18

.
Inheritance: a more complex example

class FileLog(Log):
def __init__(self, fn):
print ’Initializing FilelLog’
Log.__init__(self)
self.filename = fn

reload log into memory

f = open(self.filename)
self .log = [line.strip() for line in f]
f.close ()

def add(self, m):
Log.add (self, m)

f = open(self.filename, ’a’)
f.write(m + "\n")
f.close ()

@ In this case, the base class is properly initialized

>>> f = FileLog(’log.txt’)
Initializing FileLog
Initializing Log

F. Carreiro (ILLC) Imperative programming with Python January 17th, 2012

8/18

.
Inheritance: a more complex example (v2)

o Look at

reload log into memory

f = open(self.filename)

self .log = [line.strip() for line in £]
f.close()

@ Design discussion: is it ok to access self.log directly?
@ It is better if we use Log.add .

class FileLog(Log):
def __init__(self, fn):
print ’Initializing FilelLog’
Log.__init__(self)
self.filename = fn

reload log into memory
f = open(self.filename)
for line in f:
Log.add(self, line.strip())
f.close()

F. Carreiro (ILLC) Imperative programming with Python January 17th, 2012 9 /18

.
Exceptions

We have seen that many things could go wrong during runtime

>>> f = open(’inexistent.txt’)
I0Error: [Errno 2] No such file or directory: ’inexistent.txt’

>>> int (’not_ angint’)
ValueError: invalid literal for int() with base 10: ’notyan,int’

>>> 10 * (1/0)
ZeroDivisionError: integer division or modulo by zero

>>> 4 + spam*3
NameError: name ’spam’ is not defined

>>> 227 + 2
TypeError: cannot concatenate ’str’ and ’int’ objects

F. Carreiro (ILLC) Imperative programming with Python January 17th, 2012 10 / 18

.
Exceptions

These errors are examples of exceptions

@ The represent (not necessarily fatal) errors

Exception are of a special type called Exception

@ IDError , ValueError , etc. inherit from Exception

F. Carreiro (ILLC) Imperative programming with Python January 17th, 2012 11 /18

.
Exceptions

e Exceptions (instances) are thrown
@ Until someone catches them

o For that, we use the try and except statements
try:
f = open(’somefile.txt’)
except:

print ’Something, bad happened’

things continue even if an exzception took place

@ The except: statement catches all exceptions

F. Carreiro (ILLC) Imperative programming with Python January 17th, 2012

12 /18

.
Exceptions

@ We can be more picky about which exception to handle

try:
£

open(’somefile.txt’)
int (f.readline ())

except IOError:
print ’Something,bad happened with the file’

except ValueError:
print ’Something, bad happened while converting, the line’

except:
print "Something,bad happened and we, didn’t expectit"

This works similar to the if...elif...else construction.

F. Carreiro (ILLC) Imperative programming with Python January 17th, 2012 13 /18

.
Exceptions

@ Don't forget that exceptions are objects

@ We get more information about the errors by inspecting them

try:
£

open(’somefile.txt’)
int (f.readline ())

except IOError, ioe:
print ’Error,with, file:_ %s’ % ioe.filename

except ValueError, ve:
print ’Error converting:,%s’ % ve.args

except Exception, e:
print "Error:. %s" % e

F. Carreiro (ILLC) Imperative programming with Python January 17th, 2012

14 /18

.
Exceptions are thrown
@ Exception catching can be deferred

@ They go up the call stack making every function to return immediately

def process_file(fn):

try:
f = open(fn)
v = int(f.readline ())
f.close ()
except ValueError:
v = -1

return v

main entry point

try:
v = process_file(’somefile.txt’)

except IOError:
print ’Thereyis,someyproblem with, ,the file’
exit the program wusing the sys module
sys.exit ()

do something with v

F. Carreiro (ILLC) Imperative programming with Python January 17th, 2012 15 / 18

.
Exceptions are thrown

@ You throw an exception using the raise statement

def get_color_by_name(c):
if ¢ == ’red’:
return (1,0,0)
elif ¢ == ’green’:
return (0,1,0)
elif ¢ == ’blue’:
return (0,0,1)
else:
raise KeyError (’Color,is not known’)

@ Design discussion: this function is not nice, why?

F. Carreiro (ILLC) Imperative programming with Python January 17th, 2012

16 / 18

T —
Pure & virtual methods

o Virtual methods are methods that can be overridden by a subclass

@ Every method is virtual in Python

@ Pure virtual methods are methods that should be implemented by a
subclass. Then can be ‘simulated’ in Python.

class Animal (object):
def __init__(self, n):
self .name = n

def talk(self):
raise NotImplementedError

class Cat (Animal):
def talk(self):
print self.name + ’says_meooww!’

class Dog(Animal):

def talk(self):
print self.name + ’saysywoofwoof!’

F. Carreiro (ILLC) Imperative programming with Python January 17th, 2012 17 / 18

T —
References

@ Chapters 17 and 18 of the book
http://greenteapress.com/thinkpython/thinkpython.html

@ Errors and exceptions
http://docs.python.org/tutorial/errors.html

@ Built-in exceptions
http://docs.python.org/library/exceptions.html

@ String formatting
http://docs.python.org/library/stdtypes.html#string-formatting

F. Carreiro (ILLC) Imperative programming with Python January 17th, 2012 18 / 18

http://greenteapress.com/thinkpython/thinkpython.html
http://docs.python.org/tutorial/errors.html
http://docs.python.org/library/exceptions.html
http://docs.python.org/library/stdtypes.html#string-formatting

