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Strings: the basics

A string is a sequence of ‘letters’.

They are specified with single and double quotation marks.

>>> type(’hey ho ’)

<type ’str ’>

>>> type("let ’s go")

<type ’str ’>

Let’s see some potential operations

>>> print (’2’ - ’1’)

TypeError: unsupported operand type(s) for -: ’str ’ and ’str ’
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Strings: the basics

>>> print ’bat ’ + ’man ’

batman

>>> print ’gabba ’*2 + ’hey!’

gabba gabba hey!

The len(·) function returns the length of a string

>>> len(’gabba ’*2 + ’hey!’)

16
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Strings and numbers: conversion

We may want to convert numbers to strings

>>> avg = calculate_average ()

>>> type(avg)

<type ’int ’>

>>> print ’The average is: ’ + avg + ’, congratulations!’

TypeError: cannot concatenate ’str ’ and ’int ’ objects

The str(·) function returns the string representation of a number.

>>> print ’The average is: ’ + str(avg) + ’, congratulations!’

The average is: 9.5, congratulations!

Conversely, int(·) and float(·) convert strings to numbers

>>> type(int(’282’))

<type ’int ’>

>>> type(float (’5.5’))

<type ’float ’>
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Strings: indexing and slicing

We saw that strings are sequences of letters

s = ’this is a string ’

They can be indexed by integers with [·]
>>> s[2]

’i’

. . . starting from 0 and up to length - 1

>>> len(s)

16

>>> s[16]

IndexError: string index out of range

Although...

>>> s[-1]

’g’

you can count backwards using negative numbers!
Warning: this is highly Python-specific.
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Strings: indexing and slicing

Strings are immutable: you can’t modify them

>>> s[4] = ’L’

TypeError: ’str’ object does not support item assignment

But you can make new strings out of its slices

t h i s i s a s t r i n g
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

>>> s[0:7] + ’ not’ + s[7:]

’this is not a string ’
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Strings methods

Methods are functions associated with an object.

They are called using the ‘dot notation’.

For example, strings have a method called upper

>>> s.upper()

’THIS IS A STRING ’

>>> s

’this is a string ’

it returns an uppercased version of the string without modifying it.

The find method looks for a substring and returns its index

>>> ’Python ’.find(’thon’)

2

>>> ’Python ’.find(’tuna’)

-1

Suggested HW: Check all of them in the Python documentation.
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Keyboard input

raw input(·) lets the user input some text with the keyboard

>>> i = raw_input ()

Hello , my dear program

>>> type(i)

<type ’str ’>

>>> len(i)

22

>>> print i

Hello , my dear program

You can use it with a message

>>> i = raw_input(’Are you talking to me?’)

Are you talking to me?Yes

>>> print i

Yes
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Flow control: conditional execution

The simplest form to control the flow of the execution is the
conditional execution with the if statement

if boolean_expression: body

A small example

name = raw_input(’Please insert your name: ’)

amount = int(raw_input(’How much will you donate? ’))

if amount <= 0:

print ’You should input a positive number!’

blacklist(name)

quit()

process_donation(name , amount)

Watch out: The body of the if statement is delimited by either tabs
or spaces. This is called indentation. Do not mix tabs and spaces!
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Flow control: alternative execution

Execution of alternatives is controlled with the else statement

if boolean_expression:

[some code block]

else:

[some code block]

dividend = int(raw_input(’Insert the dividend: ’))

divisor = int(raw_input(’Insert the divisor: ’))

# check if the division yields an integer number

if dividend % divisor == 0:

print ’The result is: ’ + str(dividend / divisor)

else:

print ’I\’m sorry , I can\’t do that.’
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Flow control: chained conditionals

You can chain conditionals with the elif statement
(which stands for ‘else if’)

if boolean_expression:

[some code block]

elif boolean_expression:

[some code block]

else:

[some code block]

Let’s see an example of all of them. . .
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Flow control: chained conditionals (example)

correct_answer = 762057

answer = input("What ’s the num of inhabitants in Amsterdam? ")

# compute the absolute distance to the correct answer

difference = abs(correct_answer - answer)

# ...

if answer < 0:

print ’Are you insane?’

elif difference == 0:

print ’Exactly!’

elif difference < 5000:

print ’Quite close ...’

elif difference < 50000:

print ’You can do better!’

else:

print ’Not even close ...’
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Functions

A function is a named sequence of statements that performs a
computation.

We have seen some functions already: type(·) , abs(·) , int(·) .

A function is ‘called’ by its name and ‘passing’ some arguments
separated by commas: name(arg1, . . . , argn)

Calling a function temporarily deviates the flow of execution.

The arguments can be values, variables, expressions.

Functions can have a return value. For example we say that abs(·)
takes a number as an argument and returns the absolute value.
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Functions

Functions have to be defined before they are used.

abs(·) , int(·) are built-in functions, they are defined for you with
the rest of the Python language.

Tip: If you know the name of a function you can use the help(·)
command to get the documentation about it

>>> help(abs)

abs (...)

abs(number) -> number

Return the absolute value of the argument.
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Functions: DIY

Functions are defined with the def keyword.

def is_even(n):

if n % 2 == 0:

return True

else:

return False

The argument passed to is even(n) will be assigned to n .

The return keyword sets the return value and exits the function
immediately. It can also be used without a value (just return ).

If no return is present, the function automatically returns at the
end of its body.

Good practice tip: reduce the number of return points.

def is_even(n):

return (n % 2 == 0)
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Functions: local variables

Variables inside function definitions have a local scope.

def average(n, m):

thesum = float(n + m)

return thesum /2

You can only use the function as a black box

>>> print average (3,4)

3.5

>>> print thesum

Traceback (most recent call last):

File "<stdin >", line 1, in <module >

NameError: name ’thesum ’ is not defined

Design tip: thinking of functions as black boxes performing a certain
action is the way to go.
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Why functions?

1 Organization

Divide and conquer
Separation of concerns

2 Code reuse

Do not repeat yourself
Functions can be shared among different programs

3 Maintainability

Easier to debug
Easier to read

4 Design for change

Define (or at least have in mind) an interface for each function
Encapsulate things that could change
Good practice foundation: Information hiding (David Parnas, “On the

Criteria to Be Used in Decomposing Systems Into Modules”)
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Interfaces

The interface of a function is a summary of how it is used:

What are the parameters?

What does the function do? as opposed to how.

What is the return value? which are the side-effects?

A popular method is that of pre-conditions and post-conditions.

It specifies a contract between the caller and the function.

The precondition has to be satisfied by the caller.

The caller can assume the postcondition.

Written in some formal language.
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Interfaces: an example

Suppose we want to specify the sort function which takes a list of
numbers and orders them.

sort(L:[Int]) → res:[Int]

pre: True

post
1 ordered: ∀i , j ∈ {0, . . . , |L| − 1}, i < j ⇒ resi ≤ resj
2 same list:∀e ∈ L, e ∈ res ∧ ∀e ∈ res, e ∈ L (too weak!)

∀e ∈ L, count(res, e) = count(L, e) ∧
∀e ∈ res, count(res, e) = count(L, e)
where count(A, e) := |[i : i ∈ {0, . . . , |A| − 1},Ai = e]|

As you can see,

It helps spot possible mistakes.

We end up having an unambiguous specification.

It is hard work, even for simple and small functions.
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