
Imperative programming with Python
Class #2

Facundo Carreiro

ILLC, University of Amsterdam

January 2015

Strings: the basics

A string is a sequence of ‘letters’.

They are specified with single and double quotation marks.

>>> type(’hey ho ’)

<type ’str ’>

>>> type("let ’s go")

<type ’str ’>

Let’s see some potential operations

>>> print (’2’ - ’1’)

TypeError: unsupported operand type(s) for -: ’str ’ and ’str ’

F. Carreiro (ILLC) Imperative programming with Python January 2015 2 / 20

Strings: the basics

>>> print ’bat ’ + ’man ’

batman

>>> print ’gabba ’*2 + ’hey!’

gabba gabba hey!

The len(·) function returns the length of a string

>>> len(’gabba ’*2 + ’hey!’)

16

F. Carreiro (ILLC) Imperative programming with Python January 2015 3 / 20

Strings and numbers: conversion

We may want to convert numbers to strings

>>> avg = calculate_average ()

>>> type(avg)

<type ’int ’>

>>> print ’The average is: ’ + avg + ’, congratulations!’

TypeError: cannot concatenate ’str ’ and ’int ’ objects

The str(·) function returns the string representation of a number.

>>> print ’The average is: ’ + str(avg) + ’, congratulations!’

The average is: 9.5, congratulations!

Conversely, int(·) and float(·) convert strings to numbers

>>> type(int(’282’))

<type ’int ’>

>>> type(float (’5.5’))

<type ’float ’>

F. Carreiro (ILLC) Imperative programming with Python January 2015 4 / 20

Strings: indexing and slicing

We saw that strings are sequences of letters

s = ’this is a string ’

They can be indexed by integers with [·]
>>> s[2]

’i’

. . . starting from 0 and up to length - 1

>>> len(s)

16

>>> s[16]

IndexError: string index out of range

Although...

>>> s[-1]

’g’

you can count backwards using negative numbers!
Warning: this is highly Python-specific.

F. Carreiro (ILLC) Imperative programming with Python January 2015 5 / 20

Strings: indexing and slicing

Strings are immutable: you can’t modify them

>>> s[4] = ’L’

TypeError: ’str’ object does not support item assignment

But you can make new strings out of its slices

t h i s i s a s t r i n g
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

>>> s[0:7] + ’ not’ + s[7:]

’this is not a string ’

F. Carreiro (ILLC) Imperative programming with Python January 2015 6 / 20

Strings methods

Methods are functions associated with an object.

They are called using the ‘dot notation’.

For example, strings have a method called upper

>>> s.upper()

’THIS IS A STRING ’

>>> s

’this is a string ’

it returns an uppercased version of the string without modifying it.

The find method looks for a substring and returns its index

>>> ’Python ’.find(’thon’)

2

>>> ’Python ’.find(’tuna’)

-1

Suggested HW: Check all of them in the Python documentation.

F. Carreiro (ILLC) Imperative programming with Python January 2015 7 / 20

Keyboard input

raw input(·) lets the user input some text with the keyboard

>>> i = raw_input ()

Hello , my dear program

>>> type(i)

<type ’str ’>

>>> len(i)

22

>>> print i

Hello , my dear program

You can use it with a message

>>> i = raw_input(’Are you talking to me?’)

Are you talking to me?Yes

>>> print i

Yes

F. Carreiro (ILLC) Imperative programming with Python January 2015 8 / 20

Flow control: conditional execution

The simplest form to control the flow of the execution is the
conditional execution with the if statement

if boolean_expression: body

A small example

name = raw_input(’Please insert your name: ’)

amount = int(raw_input(’How much will you donate? ’))

if amount <= 0:

print ’You should input a positive number!’

blacklist(name)

quit()

process_donation(name , amount)

Watch out: The body of the if statement is delimited by either tabs
or spaces. This is called indentation. Do not mix tabs and spaces!

F. Carreiro (ILLC) Imperative programming with Python January 2015 9 / 20

Flow control: alternative execution

Execution of alternatives is controlled with the else statement

if boolean_expression:

[some code block]

else:

[some code block]

dividend = int(raw_input(’Insert the dividend: ’))

divisor = int(raw_input(’Insert the divisor: ’))

check if the division yields an integer number

if dividend % divisor == 0:

print ’The result is: ’ + str(dividend / divisor)

else:

print ’I\’m sorry , I can\’t do that.’

F. Carreiro (ILLC) Imperative programming with Python January 2015 10 / 20

Flow control: chained conditionals

You can chain conditionals with the elif statement
(which stands for ‘else if’)

if boolean_expression:

[some code block]

elif boolean_expression:

[some code block]

else:

[some code block]

Let’s see an example of all of them. . .

F. Carreiro (ILLC) Imperative programming with Python January 2015 11 / 20

Flow control: chained conditionals (example)

correct_answer = 762057

answer = input("What ’s the num of inhabitants in Amsterdam? ")

compute the absolute distance to the correct answer

difference = abs(correct_answer - answer)

...

if answer < 0:

print ’Are you insane?’

elif difference == 0:

print ’Exactly!’

elif difference < 5000:

print ’Quite close ...’

elif difference < 50000:

print ’You can do better!’

else:

print ’Not even close ...’

F. Carreiro (ILLC) Imperative programming with Python January 2015 12 / 20

Functions

A function is a named sequence of statements that performs a
computation.

We have seen some functions already: type(·) , abs(·) , int(·) .

A function is ‘called’ by its name and ‘passing’ some arguments
separated by commas: name(arg1, . . . , argn)

Calling a function temporarily deviates the flow of execution.

The arguments can be values, variables, expressions.

Functions can have a return value. For example we say that abs(·)
takes a number as an argument and returns the absolute value.

F. Carreiro (ILLC) Imperative programming with Python January 2015 13 / 20

Functions

Functions have to be defined before they are used.

abs(·) , int(·) are built-in functions, they are defined for you with
the rest of the Python language.

Tip: If you know the name of a function you can use the help(·)
command to get the documentation about it

>>> help(abs)

abs (...)

abs(number) -> number

Return the absolute value of the argument.

F. Carreiro (ILLC) Imperative programming with Python January 2015 14 / 20

Functions: DIY

Functions are defined with the def keyword.

def is_even(n):

if n % 2 == 0:

return True

else:

return False

The argument passed to is even(n) will be assigned to n .

The return keyword sets the return value and exits the function
immediately. It can also be used without a value (just return).

If no return is present, the function automatically returns at the
end of its body.

Good practice tip: reduce the number of return points.

def is_even(n):

return (n % 2 == 0)

F. Carreiro (ILLC) Imperative programming with Python January 2015 15 / 20

Functions: local variables

Variables inside function definitions have a local scope.

def average(n, m):

thesum = float(n + m)

return thesum /2

You can only use the function as a black box

>>> print average (3,4)

3.5

>>> print thesum

Traceback (most recent call last):

File "<stdin >", line 1, in <module >

NameError: name ’thesum ’ is not defined

Design tip: thinking of functions as black boxes performing a certain
action is the way to go.

F. Carreiro (ILLC) Imperative programming with Python January 2015 16 / 20

Why functions?

1 Organization

Divide and conquer
Separation of concerns

2 Code reuse

Do not repeat yourself
Functions can be shared among different programs

3 Maintainability

Easier to debug
Easier to read

4 Design for change

Define (or at least have in mind) an interface for each function
Encapsulate things that could change
Good practice foundation: Information hiding (David Parnas, “On the

Criteria to Be Used in Decomposing Systems Into Modules”)

F. Carreiro (ILLC) Imperative programming with Python January 2015 17 / 20

Interfaces

The interface of a function is a summary of how it is used:

What are the parameters?

What does the function do? as opposed to how.

What is the return value? which are the side-effects?

A popular method is that of pre-conditions and post-conditions.

It specifies a contract between the caller and the function.

The precondition has to be satisfied by the caller.

The caller can assume the postcondition.

Written in some formal language.

F. Carreiro (ILLC) Imperative programming with Python January 2015 18 / 20

Interfaces: an example

Suppose we want to specify the sort function which takes a list of
numbers and orders them.

sort(L:[Int]) → res:[Int]

pre: True

post
1 ordered: ∀i , j ∈ {0, . . . , |L| − 1}, i < j ⇒ resi ≤ resj
2 same list:∀e ∈ L, e ∈ res ∧ ∀e ∈ res, e ∈ L (too weak!)

∀e ∈ L, count(res, e) = count(L, e) ∧
∀e ∈ res, count(res, e) = count(L, e)
where count(A, e) := |[i : i ∈ {0, . . . , |A| − 1},Ai = e]|

As you can see,

It helps spot possible mistakes.

We end up having an unambiguous specification.

It is hard work, even for simple and small functions.

F. Carreiro (ILLC) Imperative programming with Python January 2015 19 / 20

References

Chapters 3, 5 and 6 of the book
http://greenteapress.com/thinkpython/thinkpython.html

Boolean operations
http://docs.python.org/reference/expressions.html#boolean-operations

Python: Myths about indentation
http://www.secnetix.de/olli/Python/block_indentation.hawk

The Python Standard Library
http://docs.python.org/library/

F. Carreiro (ILLC) Imperative programming with Python January 2015 20 / 20

http://greenteapress.com/thinkpython/thinkpython.html
http://docs.python.org/reference/expressions.html#boolean-operations
http://www.secnetix.de/olli/Python/block_indentation.hawk
http://docs.python.org/library/

