
Imperative programming with Python
Class #3

Facundo Carreiro

ILLC, University of Amsterdam

January 2015

Functions: execution and the call stack

I
I
I
I
I
I
I
I
I
I
I

def cat_twice_and_print(part1 , part2):

cat = part1 + part2

print_twice(cat)

def print_twice(msg):

print msg

print msg

line1 = ’welcome ’

line2 = ’to the jungle ’

cat_twice_and_print(line1 , line2)

print twice
msg 7→ ’welcome to the jungle’

cat twice and print
part1 7→ ’welcome ’

part2 7→ ’to the jungle’

cat 7→ ’welcome to the jungle’

main
line1 7→ ’welcome ’

line2 7→ ’to the jungle’

Output:
welcome to the jungle

welcome to the jungle

F. Carreiro (ILLC) Imperative programming with Python January 2015 2 / 21

Functions: execution and the call stack

I

def cat_twice_and_print(part1 , part2):

cat = part1 + part2

print_twice(cat)

def print_twice(msg):

f(msg)

print msg

print msg

line1 = ’welcome ’

line2 = ’to the jungle ’

cat_twice_and_print(line1 , line2)

print twice
msg 7→ ’welcome to the jungle’

cat twice and print
part1 7→ ’welcome ’

part2 7→ ’to the jungle’

cat 7→ ’welcome to the jungle’

main
line1 7→ ’welcome ’

line2 7→ ’to the jungle’

Traceback (most recent call last):

File "code.py", line 12, in <module >

cat_twice_and_print(line1 , line2)

File "code.py", line 3, in cat_twice_and_print

print_twice(cat)

File "code.py", line 6, in print_twice

f(msg)

NameError: global name ’f’ is not defined

F. Carreiro (ILLC) Imperative programming with Python January 2015 3 / 21

Functions: recursion

Functions can call themselves in their definition.

calculates n * m (in a complicated way)

def multiply(n, m):

if n == 0:

return 0

else:

return m + multiply(n - 1, m)

How does the call stack look for multiply(2, 7) look like?

multiply
n 7→ 2, m 7→ 7
ret 7→ 7 + . . .

multiply
n 7→ 1, m 7→ 7
ret 7→ 7 + . . .

multiply
n 7→ 0, m 7→ 7
ret 7→ 0

F. Carreiro (ILLC) Imperative programming with Python January 2015 4 / 21

Functions: recursion

It is crucial that the arguments of a recursive call are in some sense
‘smaller’ than the arguments of the function call itself.

What happens if we write multiply as follows

def multiply(n, m):

if n == 0:

return 0

else:

return m + multiply(n, m)

>>> multiply(2, 7)

Traceback (most recent call last):

File "<stdin >", line 1, in <module >

File "<stdin >", line 5, in multiply

File "<stdin >", line 5, in multiply

...

File "<stdin >", line 5, in multiply

RuntimeError: maximum recursion depth exceeded

Stack overflow!

F. Carreiro (ILLC) Imperative programming with Python January 2015 5 / 21

Functions: recursion

You can also have many recursive calls

def fib(n):

if n == 0:

return n

else:

return fib(n - 1) + fib(n - 2)

Is it well defined? No, what about fib(1) ?

def fib(n):

if n == 0 or n == 1:

return n

else:

return fib(n - 1) + fib(n - 2)

Is it well defined? Yes.

F. Carreiro (ILLC) Imperative programming with Python January 2015 6 / 21

Functions: recursion

The argument itself can increase. . .

def reverse_string(s):

return reverse_from_n(s, 0)

def reverse_from_n(s, i):

if i == len(s):

return ’’

else:

return reverse_from_n(s, i+1) + s[i]

But if you look closer len(s) - i is strictly decreasing.

F. Carreiro (ILLC) Imperative programming with Python January 2015 7 / 21

Functions: recursion

Is the folowing function well defined (for n > 0)?

def collatz(n):

if n == 1:

return 0

elif n % 2 == 0:

return 1 + collatz(n/2)

else:

return 1 + collatz (3*n+1)

Who knows! It has been an open problem for years.

F. Carreiro (ILLC) Imperative programming with Python January 2015 8 / 21

The collatz conjecture
By the XKCD webcomic

F. Carreiro (ILLC) Imperative programming with Python January 2015 9 / 21

Modules

In general, programming languages come with a library of functions
organized in some way.

In Python, the library is organized in modules.

For the moment, a module is a collection of related functions.

Modules are used (imported) with the import keyword.

F. Carreiro (ILLC) Imperative programming with Python January 2015 10 / 21

Python module library
By the XKCD webcomic

F. Carreiro (ILLC) Imperative programming with Python January 2015 11 / 21

Using modules

As an example we will use the random module. It contains functions
to generate random numbers in various probability distributions.

First we need to import the module

>>> import random

The functions in the module will be inside the random namespace.
They are accessed using the dot notation

Returns an integer from 1 to 10, endpoints included

>>> random.randint(1, 10)

7

Suggested homework: read the book’s intro to the math module.

F. Carreiro (ILLC) Imperative programming with Python January 2015 12 / 21

Using modules

You can import functions into the main namespace

>>> from random import choice

>>> choice(’abcdef ’)

c

You can also import everything into the main namespace

>>> from random import *

But please don’t! unless it is extremely necessary.

You can import modules and assign them a different name

>>> import random as r

>>> r.randint(1, 10)

7

F. Carreiro (ILLC) Imperative programming with Python January 2015 13 / 21

Random numbers
By Dilbert

Related topic in Theoretical Computer Science:
http://en.wikipedia.org/wiki/Algorithmically_random_sequence

F. Carreiro (ILLC) Imperative programming with Python January 2015 14 / 21

http://en.wikipedia.org/wiki/Algorithmically_random_sequence

Repetition

Suppose we want to make a function that given n calculates
∑n

i=1 i .

def sum_up_to(n):

res = 1 + 2 + ... + n

return res

This is not a valid program, for many reasons.

Luckily, computers are very good at doing repetitive things.
We have the while statement to aid us.

def sum_up_to(n):

i = 1

v = 0

while i <= n:

v = v + i

i = i + 1

return v

The body gets repeated while the condition evaluates to true.

F. Carreiro (ILLC) Imperative programming with Python January 2015 15 / 21

Repetition

Another handy construction is the for statement

It goes through so called ‘iterable’ objects, e.g. strings
>>> for letter in ’hello ’:

... print ’Give me an "’ + letter + ’"!’

...

Give me an "h"!

Give me an "e"!

Give me an "l"!

Give me an "l"!

Give me an "o"!

‘Lists’ are also iterable (we will see them later)
>>> range (3)

[0, 1, 2]

>>> for i in range (3):

... print i**2

...

0

1

4

F. Carreiro (ILLC) Imperative programming with Python January 2015 16 / 21

Repetition: while loops

while loops are a powerful but tricky construction.

They can run forever and make our program hang!

while True:

x = x + 1

ok, we would not write that, but what about. . .

x = int(raw_input ())

sum = 0

while x != 100:

sum = sum + x

x = x + 2

If x > 100 or x is odd this loop never ends.

F. Carreiro (ILLC) Imperative programming with Python January 2015 17 / 21

Repetition: loop invariants

A loop invariant is an invariant used to prove properties of loops.

For example, correctness and termination of loops.

Connected to pre and post-conditions.

E.g.: count(c:String, sentence:String) → res:Int

pre: True

post: res = |[1 : i ∈ {0, . . . , |sentence| − 1}, sentencei = c]|

Suppose we have the following implementation

def count(c, sentence):

i = 0; n = 0

while i < len(sentence):

if sentence[i] == c: n = n + 1

i = i + 1

return n

F. Carreiro (ILLC) Imperative programming with Python January 2015 18 / 21

Repetition: loop invariants

post: res = |[1 : i ∈ {0, . . . , |sentence| − 1}, sentencei = c]|
def count(c, sentence):

i = 0; n = 0

while i < len(sentence):

if sentence[i] == c: n = n + 1

i = i + 1

return n

Let C be our loop condition and I be our loop invariant, a theorem says:

C: i < |sentence|
I: 0 ≤ i ≤ |sentence| ∧ n = |[1 : x ∈ {0, . . . , i − 1}, sentencex = c]|

If we chose correctly our invariant, with ¬C ∧ I we should be able to prove
the postcondition.

F. Carreiro (ILLC) Imperative programming with Python January 2015 19 / 21

Repetition: where’s the catch?

Are the for and while statements equivalent?

Short answer: in Python, yes.

Long answer:

In old languages like BASIC and Pascal the for statement was
meant to be used as for i = A to B: body . Modifications to i

in the body would not change the iteration.

In a while statement, the expression gets evaluated in every loop.

Some facts (check this out):

In theoretical computer science the difference between while and
for statements is kept.

Using what we have seen you can write any possible program!

But, if you don’t use while you can only write ‘some’ of them.

In fact, you could write any program using just ONE while .

F. Carreiro (ILLC) Imperative programming with Python January 2015 20 / 21

References

Chapters 3 and 5–7 of the book
http://greenteapress.com/thinkpython/thinkpython.html

Wikipedia article on ‘Call Stack’
http://en.wikipedia.org/wiki/Call_stack

Wikipedia article on ‘Collatz conjecture’
http://en.wikipedia.org/wiki/Collatz_conjecture

Wikipedia article on ‘Loop invariants’
http://en.wikipedia.org/wiki/Loop_invariant

The random module
http://docs.python.org/library/random.html

F. Carreiro (ILLC) Imperative programming with Python January 2015 21 / 21

http://greenteapress.com/thinkpython/thinkpython.html
http://en.wikipedia.org/wiki/Call_stack
http://en.wikipedia.org/wiki/Collatz_conjecture
http://en.wikipedia.org/wiki/Loop_invariant
http://docs.python.org/library/random.html

