
Imperative programming with Python
Class #4

Facundo Carreiro

ILLC, University of Amsterdam

January 2015

Data structures

A data structure is a particular way of storing and organizing data in
a computer so that it can be used efficiently.

We have already stumbled upon one of them

>>> L = [2,3,5,7]

>>> type(L)

<type ’list’>

The List data type!

The values of the list type are sequences of elements a1, . . . , an,

Where each ai is a value of any type.

F. Carreiro (ILLC) Imperative programming with Python January 2015 2 / 18

Data structures

A data structure is a particular way of storing and organizing data in
a computer so that it can be used efficiently.

We have already stumbled upon one of them

>>> L = [2,3,5,7]

>>> type(L)

<type ’list’>

The List data type!

The values of the list type are sequences of elements a1, . . . , an,

Where each ai is a value of any type.

F. Carreiro (ILLC) Imperative programming with Python January 2015 2 / 18

Data structures: Lists

The easiest way to create a list is using the square brackets

L = []

is the empty list, and

L = [2, ’hello ’, [4, True], abs(-1)]

is an example of a nested list.

You can index them as you did with strings

>>> L[1]

’hello’

>>> L[2][1]

True

The len(·) function, as usual, returns the length of the list

>>> len(L)

4

F. Carreiro (ILLC) Imperative programming with Python January 2015 3 / 18

Data structures: Lists

The easiest way to create a list is using the square brackets

L = []

is the empty list, and

L = [2, ’hello ’, [4, True], abs(-1)]

is an example of a nested list.

You can index them as you did with strings

>>> L[1]

’hello’

>>> L[2][1]

True

The len(·) function, as usual, returns the length of the list

>>> len(L)

4

F. Carreiro (ILLC) Imperative programming with Python January 2015 3 / 18

Data structures: Lists

The easiest way to create a list is using the square brackets

L = []

is the empty list, and

L = [2, ’hello ’, [4, True], abs(-1)]

is an example of a nested list.

You can index them as you did with strings

>>> L[1]

’hello’

>>> L[2][1]

True

The len(·) function, as usual, returns the length of the list

>>> len(L)

4

F. Carreiro (ILLC) Imperative programming with Python January 2015 3 / 18

Data structures: Lists

Lists are mutable

>>> L[0] = 5*5

>>> L

[25, ’hello ’, [4, True], 1]

You can use + to concatenate lists

>>> [1,2] + [3,4] + [5]

[1, 2, 3, 4, 5]

You can use + and the append and insert methods to add

elements to a list (among others)

>>> L + [3]

[25, ’hello ’, [4, True], 1, 3]

>>> L.append (6)

>>> L

[25, ’hello ’, [4, True], 1, 6]

Question: where did the ’3’ go?

F. Carreiro (ILLC) Imperative programming with Python January 2015 4 / 18

Data structures: Lists

Lists are mutable

>>> L[0] = 5*5

>>> L

[25, ’hello ’, [4, True], 1]

You can use + to concatenate lists

>>> [1,2] + [3,4] + [5]

[1, 2, 3, 4, 5]

You can use + and the append and insert methods to add

elements to a list (among others)

>>> L + [3]

[25, ’hello ’, [4, True], 1, 3]

>>> L.append (6)

>>> L

[25, ’hello ’, [4, True], 1, 6]

Question: where did the ’3’ go?

F. Carreiro (ILLC) Imperative programming with Python January 2015 4 / 18

Data structures: Lists

Lists are mutable

>>> L[0] = 5*5

>>> L

[25, ’hello ’, [4, True], 1]

You can use + to concatenate lists

>>> [1,2] + [3,4] + [5]

[1, 2, 3, 4, 5]

You can use + and the append and insert methods to add

elements to a list (among others)

>>> L + [3]

[25, ’hello ’, [4, True], 1, 3]

>>> L.append (6)

>>> L

[25, ’hello ’, [4, True], 1, 6]

Question: where did the ’3’ go?

F. Carreiro (ILLC) Imperative programming with Python January 2015 4 / 18

Data structures: Lists

Lists are mutable

>>> L[0] = 5*5

>>> L

[25, ’hello ’, [4, True], 1]

You can use + to concatenate lists

>>> [1,2] + [3,4] + [5]

[1, 2, 3, 4, 5]

You can use + and the append and insert methods to add

elements to a list (among others)

>>> L + [3]

[25, ’hello ’, [4, True], 1, 3]

>>> L.append (6)

>>> L

[25, ’hello ’, [4, True], 1, 6]

Question: where did the ’3’ go?

F. Carreiro (ILLC) Imperative programming with Python January 2015 4 / 18

Data structures: Lists

There are several ways to delete an item from a list

If you know the index you can use del

>>> M = [’a’,’f’,’z’]

>>> del M[0]

>>> M

[’f’, ’z’]

or the pop(·) method

>>> M.pop(1)

’z’

>>> M

[’f’]

If you know the element but not the index you can use the
remove(·) method to remove the first occurrence

>>> M = [’a’,’b’,’b’,’c’]

>>> M.remove(’b’)

>>> M

[’a’, ’b’, ’c’]

F. Carreiro (ILLC) Imperative programming with Python January 2015 5 / 18

Data structures: Lists

There are several ways to delete an item from a list
If you know the index you can use del

>>> M = [’a’,’f’,’z’]

>>> del M[0]

>>> M

[’f’, ’z’]

or the pop(·) method

>>> M.pop(1)

’z’

>>> M

[’f’]

If you know the element but not the index you can use the
remove(·) method to remove the first occurrence

>>> M = [’a’,’b’,’b’,’c’]

>>> M.remove(’b’)

>>> M

[’a’, ’b’, ’c’]

F. Carreiro (ILLC) Imperative programming with Python January 2015 5 / 18

Data structures: Lists

There are several ways to delete an item from a list
If you know the index you can use del

>>> M = [’a’,’f’,’z’]

>>> del M[0]

>>> M

[’f’, ’z’]

or the pop(·) method

>>> M.pop(1)

’z’

>>> M

[’f’]

If you know the element but not the index you can use the
remove(·) method to remove the first occurrence

>>> M = [’a’,’b’,’b’,’c’]

>>> M.remove(’b’)

>>> M

[’a’, ’b’, ’c’]

F. Carreiro (ILLC) Imperative programming with Python January 2015 5 / 18

Data structures: Lists

Lists can be iterated, it is one of the most common operations

>>> range (5)

[0, 1, 2, 3, 4]

>>> acumm = 0

>>> for i in range (5):

... acumm += i

>>> acumm

10

The slice ([n:m]) operator also works with them

>>> L[:2]

[25, ’hello ’]

Suggested HW: check the Python documentation for Lists.

F. Carreiro (ILLC) Imperative programming with Python January 2015 6 / 18

Data structures: Lists

Lists can be iterated, it is one of the most common operations

>>> range (5)

[0, 1, 2, 3, 4]

>>> acumm = 0

>>> for i in range (5):

... acumm += i

>>> acumm

10

The slice ([n:m]) operator also works with them

>>> L[:2]

[25, ’hello ’]

Suggested HW: check the Python documentation for Lists.

F. Carreiro (ILLC) Imperative programming with Python January 2015 6 / 18

Data structures: Lists and strings

Strings are sequences of characters

But that is not the same as a list of characters

>>> s = ’hello ’

>>> l = [’h’,’e’,’l’,’l’,’o’]

>>> type(s)

<type ’str’>

>>> type(l)

<type ’list’>

>>> print s, l

hello [’h’, ’e’, ’l’, ’l’, ’o’]

The list(·) function converts strings to lists

>>> list(s)

[’h’, ’e’, ’l’, ’l’, ’o’]

F. Carreiro (ILLC) Imperative programming with Python January 2015 7 / 18

Data structures: Lists and strings

Strings are sequences of characters

But that is not the same as a list of characters

>>> s = ’hello ’

>>> l = [’h’,’e’,’l’,’l’,’o’]

>>> type(s)

<type ’str’>

>>> type(l)

<type ’list’>

>>> print s, l

hello [’h’, ’e’, ’l’, ’l’, ’o’]

The list(·) function converts strings to lists

>>> list(s)

[’h’, ’e’, ’l’, ’l’, ’o’]

F. Carreiro (ILLC) Imperative programming with Python January 2015 7 / 18

Data structures: Lists and strings

A much more interesting effect can be achieved using the split

string method

>>> ’what a wonderful world’.split()

[’what’, ’a’, ’wonderful ’, ’world ’]

Keep this one in mind, it’s very useful.
Suggested HW: execute help(’any string’.split)

To do the inverse, you use the join function of the string module

>>> import string

>>> string.join([’put’, ’us’, ’toghether ’])

’put us toghether ’

>>> string.join([’first’,’second ’,’third ’],’, ’)

’first , second , third ’

F. Carreiro (ILLC) Imperative programming with Python January 2015 8 / 18

Data structures: Lists and strings

A much more interesting effect can be achieved using the split

string method

>>> ’what a wonderful world’.split()

[’what’, ’a’, ’wonderful ’, ’world ’]

Keep this one in mind, it’s very useful.
Suggested HW: execute help(’any string’.split)

To do the inverse, you use the join function of the string module

>>> import string

>>> string.join([’put’, ’us’, ’toghether ’])

’put us toghether ’

>>> string.join([’first’,’second ’,’third ’],’, ’)

’first , second , third ’

F. Carreiro (ILLC) Imperative programming with Python January 2015 8 / 18

The Object Model

We said that variables referred to values, but actually that is not true.

Variables refer to objects.

Objects are abstractions for data, they have
1 A type
2 An identity (can be though of as: “the place in the memory”)
3 A value

Let’s analyze how the following piece of code acts

a = ’banana ’

b = ’banana ’

The is operator compares objects and tells us we are in the second case.

>>> a is b

True

>>> a == b

True

F. Carreiro (ILLC) Imperative programming with Python January 2015 9 / 18

The Object Model

We said that variables referred to values, but actually that is not true.

Variables refer to objects.

Objects are abstractions for data, they have
1 A type
2 An identity (can be though of as: “the place in the memory”)
3 A value

Let’s analyze how the following piece of code acts

a = ’banana ’

b = ’banana ’

The is operator compares objects and tells us we are in the second case.

>>> a is b

True

>>> a == b

True

F. Carreiro (ILLC) Imperative programming with Python January 2015 9 / 18

The Object Model

We said that variables referred to values, but actually that is not true.

Variables refer to objects.

Objects are abstractions for data, they have
1 A type
2 An identity (can be though of as: “the place in the memory”)
3 A value

Let’s analyze how the following piece of code acts

a = ’banana ’

b = ’banana ’

The is operator compares objects and tells us we are in the second case.

>>> a is b

True

>>> a == b

True

F. Carreiro (ILLC) Imperative programming with Python January 2015 9 / 18

The Object Model

Let’s see what happens with Lists

a = [1, 2, 3]

b = [1, 2, 3]

We use the is and == operators to test it

>>> a is b

False

>>> a == b

True

What happens in the following case?

a = [1, 2, 3]

b = a

>>> a is b

True

>>> a == b

True

a and b refer to the same object. They are called aliases.

F. Carreiro (ILLC) Imperative programming with Python January 2015 10 / 18

The Object Model

Let’s see what happens with Lists

a = [1, 2, 3]

b = [1, 2, 3]

We use the is and == operators to test it

>>> a is b

False

>>> a == b

True

What happens in the following case?

a = [1, 2, 3]

b = a

>>> a is b

True

>>> a == b

True

a and b refer to the same object. They are called aliases.

F. Carreiro (ILLC) Imperative programming with Python January 2015 10 / 18

The Object Model

Let’s see what happens with Lists

a = [1, 2, 3]

b = [1, 2, 3]

We use the is and == operators to test it

>>> a is b

False

>>> a == b

True

What happens in the following case?

a = [1, 2, 3]

b = a

>>> a is b

True

>>> a == b

True

a and b refer to the same object. They are called aliases.

F. Carreiro (ILLC) Imperative programming with Python January 2015 10 / 18

The Object Model

Let’s see what happens with Lists

a = [1, 2, 3]

b = [1, 2, 3]

We use the is and == operators to test it

>>> a is b

False

>>> a == b

True

What happens in the following case?

a = [1, 2, 3]

b = a

>>> a is b

True

>>> a == b

True

a and b refer to the same object. They are called aliases.

F. Carreiro (ILLC) Imperative programming with Python January 2015 10 / 18

The Object Model

Let’s see what happens with Lists

a = [1, 2, 3]

b = [1, 2, 3]

We use the is and == operators to test it

>>> a is b

False

>>> a == b

True

What happens in the following case?

a = [1, 2, 3]

b = a

>>> a is b

True

>>> a == b

True

a and b refer to the same object. They are called aliases.

F. Carreiro (ILLC) Imperative programming with Python January 2015 10 / 18

The Object Model: aliasing

I

I
I
I
I

a = ’hello’; t = [1,2,3]; u = [1,2,3]

u = t

t[0] = 20

b = a

a = a + ’ world’

Variables Objects Values

hello

[1, 2, 3]

[20, 2, 3]

a

b

t

u

hello world

F. Carreiro (ILLC) Imperative programming with Python January 2015 11 / 18

The Object Model: aliasing

I

I

I
I
I

a = ’hello’; t = [1,2,3]; u = [1,2,3]

u = t

t[0] = 20

b = a

a = a + ’ world’

Variables Objects Values

hello

[1, 2, 3]

[20, 2, 3]

a

b

t

u

hello world

s1

L1

L2

F. Carreiro (ILLC) Imperative programming with Python January 2015 11 / 18

The Object Model: aliasing

I
I

I

I
I

a = ’hello’; t = [1,2,3]; u = [1,2,3]

u = t

t[0] = 20

b = a

a = a + ’ world’

Variables Objects Values

hello

[1, 2, 3]

[20, 2, 3]

a

b

t

u

hello world

s1

L2

F. Carreiro (ILLC) Imperative programming with Python January 2015 11 / 18

The Object Model: aliasing

I
I
I

I

I

a = ’hello’; t = [1,2,3]; u = [1,2,3]

u = t

t[0] = 20

b = a

a = a + ’ world’

Variables Objects Values

hello

[1, 2, 3]

[20, 2, 3]

a

b

t

u

hello world

s1

L2

F. Carreiro (ILLC) Imperative programming with Python January 2015 11 / 18

The Object Model: aliasing

I
I
I
I

I

a = ’hello’; t = [1,2,3]; u = [1,2,3]

u = t

t[0] = 20

b = a

a = a + ’ world’

Variables Objects Values

hello

[1, 2, 3]

[20, 2, 3]

a

b

t

u

hello world

s1

L2

F. Carreiro (ILLC) Imperative programming with Python January 2015 11 / 18

The Object Model: aliasing

I
I
I
I
I

a = ’hello’; t = [1,2,3]; u = [1,2,3]

u = t

t[0] = 20

b = a

a = a + ’ world’

Variables Objects Values

hello

[1, 2, 3]

[20, 2, 3]

a

b

t

u

hello world

s1

L2

s2

F. Carreiro (ILLC) Imperative programming with Python January 2015 11 / 18

Data Structures: tuples

Tuples are fixed length, immutable sequences of items.

You use commas and (optionally) parentheses to create them

>>> t = (55, ’text’, 8)

>>> u = (4,)

>>> v = (4)

>>> type(t)

<type ’tuple’>

>>> type(u)

<type ’tuple’>

>>> type(v)

<type ’int’>

Observe that to get a 1-tuple we need to add an extra comma.

They can be indexed, iterated and sliced just as lists and strings.

F. Carreiro (ILLC) Imperative programming with Python January 2015 12 / 18

Data Structures: tuples

Accessing each item of a tuple could be annoying

t = [(1,2,3), (’a’,’b’,’c’)]

for e in t:

x = e[0]

y = e[1]

z = e[2]

print x + y + z

Luckily, tuples can be handled in a very handy way

t = [(1,2,3), (’a’,’b’,’c’)]

for (x,y,z) in t:

print x + y + z

addr = ’monty@python.org’

(uname , domain) = addr.split(’@’)

Side note: Functional languages usually have an extended version of
this phenomenon called pattern matching.

F. Carreiro (ILLC) Imperative programming with Python January 2015 13 / 18

Data Structures: tuples

Accessing each item of a tuple could be annoying

t = [(1,2,3), (’a’,’b’,’c’)]

for e in t:

x = e[0]

y = e[1]

z = e[2]

print x + y + z

Luckily, tuples can be handled in a very handy way

t = [(1,2,3), (’a’,’b’,’c’)]

for (x,y,z) in t:

print x + y + z

addr = ’monty@python.org’

(uname , domain) = addr.split(’@’)

Side note: Functional languages usually have an extended version of
this phenomenon called pattern matching.

F. Carreiro (ILLC) Imperative programming with Python January 2015 13 / 18

Data Structures: tuples

Accessing each item of a tuple could be annoying

t = [(1,2,3), (’a’,’b’,’c’)]

for e in t:

x = e[0]

y = e[1]

z = e[2]

print x + y + z

Luckily, tuples can be handled in a very handy way

t = [(1,2,3), (’a’,’b’,’c’)]

for (x,y,z) in t:

print x + y + z

addr = ’monty@python.org’

(uname , domain) = addr.split(’@’)

Side note: Functional languages usually have an extended version of
this phenomenon called pattern matching.

F. Carreiro (ILLC) Imperative programming with Python January 2015 13 / 18

Data Structures: List Comprehensions

Python has an awesome way of constructing lists called list
comprehension. They mimic mathematical definitions such as

{f (x) | x ∈ C ∧ condition holds(x)}

Some examples

>>> [x**2 for x in range (10)]

[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]

>>> words = [’dog’, ’cat’, ’yellow ’]

>>> [(w, len(w)) for w in words if ’a’ not in w]

[(’dog’, 3), (’yellow ’, 6)]

Suggested HW: Check the reference for more involved examples.

F. Carreiro (ILLC) Imperative programming with Python January 2015 14 / 18

Data Structures: List Comprehensions

Python has an awesome way of constructing lists called list
comprehension. They mimic mathematical definitions such as

{f (x) | x ∈ C ∧ condition holds(x)}

Some examples

>>> [x**2 for x in range (10)]

[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]

>>> words = [’dog’, ’cat’, ’yellow ’]

>>> [(w, len(w)) for w in words if ’a’ not in w]

[(’dog’, 3), (’yellow ’, 6)]

Suggested HW: Check the reference for more involved examples.

F. Carreiro (ILLC) Imperative programming with Python January 2015 14 / 18

Data Structures: Dictionaries

A dictionary is a group of (key 7→ value) assignments.

The empty dictionary may be created with {} or dict(·) .

>>> d1 = {}

>>> d2 = dict()

You can create a dictionary with some predefined assignments.

d = {1:’mom’, 2:’god’,

(25 ,17):"[...] And you will know that my name is the Lord \

when I lay my vengeance upon thee."}

1 7→ mom
2 7→ god

(25, 17) 7→ [...] And you will know that my name. . .

F. Carreiro (ILLC) Imperative programming with Python January 2015 15 / 18

Data Structures: Dictionaries

A dictionary is a group of (key 7→ value) assignments.

The empty dictionary may be created with {} or dict(·) .

>>> d1 = {}

>>> d2 = dict()

You can create a dictionary with some predefined assignments.

d = {1:’mom’, 2:’god’,

(25 ,17):"[...] And you will know that my name is the Lord \

when I lay my vengeance upon thee."}

1 7→ mom
2 7→ god

(25, 17) 7→ [...] And you will know that my name. . .

F. Carreiro (ILLC) Imperative programming with Python January 2015 15 / 18

Data Structures: Dictionaries

The has key(·) method tells you if the key is defined

>>> d.has_key (1)

True

You can ‘index’ the dictionary using it’s keys

>>> d[1]

’mom ’

>>> d[0]

KeyError: 0

You can also create or update a key-value pair using [·] .

>>> d[1] = True >>> d[0] = ’mom ’

Deletion is achieved through the del statement as in lists.

F. Carreiro (ILLC) Imperative programming with Python January 2015 16 / 18

Data Structures: Dictionaries

The has key(·) method tells you if the key is defined

>>> d.has_key (1)

True

You can ‘index’ the dictionary using it’s keys

>>> d[1]

’mom ’

>>> d[0]

KeyError: 0

You can also create or update a key-value pair using [·] .

>>> d[1] = True >>> d[0] = ’mom ’

Deletion is achieved through the del statement as in lists.

F. Carreiro (ILLC) Imperative programming with Python January 2015 16 / 18

Data Structures: Dictionaries

The has key(·) method tells you if the key is defined

>>> d.has_key (1)

True

You can ‘index’ the dictionary using it’s keys

>>> d[1]

’mom ’

>>> d[0]

KeyError: 0

You can also create or update a key-value pair using [·] .

>>> d[1] = True >>> d[0] = ’mom ’

Deletion is achieved through the del statement as in lists.

F. Carreiro (ILLC) Imperative programming with Python January 2015 16 / 18

Data Structures: Dictionaries

The has key(·) method tells you if the key is defined

>>> d.has_key (1)

True

You can ‘index’ the dictionary using it’s keys

>>> d[1]

’mom ’

>>> d[0]

KeyError: 0

You can also create or update a key-value pair using [·] .

>>> d[1] = True >>> d[0] = ’mom ’

Deletion is achieved through the del statement as in lists.

F. Carreiro (ILLC) Imperative programming with Python January 2015 16 / 18

Data Structures: Dictionaries

The has key(·) method tells you if the key is defined

>>> d.has_key (1)

True

You can ‘index’ the dictionary using it’s keys

>>> d[1]

’mom ’

>>> d[0]

KeyError: 0

You can also create or update a key-value pair using [·] .

>>> d[1] = True >>> d[0] = ’mom ’

Deletion is achieved through the del statement as in lists.

F. Carreiro (ILLC) Imperative programming with Python January 2015 16 / 18

Data Structures: Dictionaries

The has key(·) method tells you if the key is defined

>>> d.has_key (1)

True

You can ‘index’ the dictionary using it’s keys

>>> d[1]

’mom ’

>>> d[0]

KeyError: 0

You can also create or update a key-value pair using [·] .

>>> d[1] = True >>> d[0] = ’mom ’

Deletion is achieved through the del statement as in lists.

F. Carreiro (ILLC) Imperative programming with Python January 2015 16 / 18

Data Structures: Dictionaries

The has key(·) method tells you if the key is defined

>>> d.has_key (1)

True

You can ‘index’ the dictionary using it’s keys

>>> d[1]

’mom ’

>>> d[0]

KeyError: 0

You can also create or update a key-value pair using [·] .

>>> d[1] = True >>> d[0] = ’mom ’

Deletion is achieved through the del statement as in lists.

F. Carreiro (ILLC) Imperative programming with Python January 2015 16 / 18

Data Structures: Dictionaries

The has key(·) method tells you if the key is defined

>>> d.has_key (1)

True

You can ‘index’ the dictionary using it’s keys

>>> d[1]

’mom ’

>>> d[0]

KeyError: 0

You can also create or update a key-value pair using [·] .

>>> d[1] = True

>>> d[0] = ’mom ’

Deletion is achieved through the del statement as in lists.

F. Carreiro (ILLC) Imperative programming with Python January 2015 16 / 18

Data Structures: Dictionaries

The has key(·) method tells you if the key is defined

>>> d.has_key (1)

True

You can ‘index’ the dictionary using it’s keys

>>> d[1]

’mom ’

>>> d[0]

KeyError: 0

You can also create or update a key-value pair using [·] .

>>> d[1] = True >>> d[0] = ’mom ’

Deletion is achieved through the del statement as in lists.

F. Carreiro (ILLC) Imperative programming with Python January 2015 16 / 18

Data Structures: Dictionaries

The has key(·) method tells you if the key is defined

>>> d.has_key (1)

True

You can ‘index’ the dictionary using it’s keys

>>> d[1]

’mom ’

>>> d[0]

KeyError: 0

You can also create or update a key-value pair using [·] .

>>> d[1] = True >>> d[0] = ’mom ’

Deletion is achieved through the del statement as in lists.

F. Carreiro (ILLC) Imperative programming with Python January 2015 16 / 18

Data Structures: Dictionaries

The keys , values and iteritems methods let you iterate over
the dictionary

>>> knights = {’gallahad ’: ’the pure’, ’robin’: ’the brave’}

>>> print knights.keys()

[’gallahad ’, ’robin’]

>>> knights.values ()

[’the pure’, ’the brave’]

Again, we can use pattern matching with tuples

>>> for (k, v) in knights.iteritems ():

... print k + ’, so called ’ + v

...

gallahad , so called the pure

robin , so called the brave

F. Carreiro (ILLC) Imperative programming with Python January 2015 17 / 18

References

Chapters 10–12 of the book
http://greenteapress.com/thinkpython/thinkpython.html

List Methods
http://docs.python.org/tutorial/datastructures.html#more-on-lists

Python Data Model
http://docs.python.org/reference/datamodel.html

List Comprehensions
http://docs.python.org/tutorial/datastructures.html#list-comprehensions

Dictionaries
http://docs.python.org/tutorial/datastructures.html#dictionaries

F. Carreiro (ILLC) Imperative programming with Python January 2015 18 / 18

http://greenteapress.com/thinkpython/thinkpython.html
http://docs.python.org/tutorial/datastructures.html#more-on-lists
http://docs.python.org/reference/datamodel.html
http://docs.python.org/tutorial/datastructures.html#list-comprehensions
http://docs.python.org/tutorial/datastructures.html#dictionaries

