
Imperative programming with Python
Class #5

Facundo Carreiro

ILLC, University of Amsterdam

January 2015

User-defined types

Built-in types are the basic building blocks.

With them we can build user-defined types called classes.

As built-in types, classes abstract concepts.

class Color(object):

""" Represents a color """

the class keyword defines a new class.

>>> print Color

<class ’__main__.Color ’>

We create a Color object calling it as a function

>>> c = Color()

>>> print c

<__main__.Color object at 0x55f10 >

c is called an instance of the Color class.

F. Carreiro (ILLC) Imperative programming with Python January 2015 2 / 17

Classes

We have to choose an internal representation for the color.

We can use, for example, the red-green-blue values.

class Color(object):

""" Represents a color """

def __init__(self , r=0, g=0, b=0):

self.r = r

self.g = g

self.b = b

the init function gets called when creating a new object.

It is called a constructor: creates (initializes) the r,g,b attributes.

Fundamental: The internal representation should be hidden.

F. Carreiro (ILLC) Imperative programming with Python January 2015 3 / 17

Classes: methods

We define methods to interact with the class.

inside the class definition

def setRGB(self , r, g, b):

self.r = r;

self.g = g;

self.b = b;

def getRGB(self):

return (self.r, self.g, self.b)

They are used with the dot notation.

>>> c.setRGB (0.2, 0.75, 0.5)

>>> print c.getRGB ()

(0.2, 0.75, 0.5)

F. Carreiro (ILLC) Imperative programming with Python January 2015 4 / 17

Classes: methods

The internal representation should be transparent to the user.

For instance, we could have some method for the YIQ representation

inside the class definition

def setYIQ(self , y, i, q):

self.r = y + 0.956*i + 0.621*q;

self.g = y - 0.272*i - 0.647*q;

self.b = y - 1.105*i + 1.702*q;

def getYIQ(self):

y = 0.299* self.r + 0.587* self.g + 0.114* self.b

i = 0.596* self.r - 0.275* self.g - 0.321* self.b

q = 0.212* self.r - 0.523* self.g - 0.311* self.b

return (y, i, q)

F. Carreiro (ILLC) Imperative programming with Python January 2015 5 / 17

Classes: pure and modifying methods

So far we defined the following types of methods:
1 init : the constructor.
2 set... : the “setters”.
3 get... : the “getters”.

More generally we can make the following distinction
1 Modifying methods: change the representation of the object.
2 Pure methods: perform a calculation and/or side effect but leave the

object unchanged.

Note: Python doesn’t have a way to specify pure methods but other
languages (e.g. C++) do.

F. Carreiro (ILLC) Imperative programming with Python January 2015 6 / 17

Classes: representation invariants

In the previous slides we implicitly assumed r , g , b ∈ [0, 1].
This is called a representation invariant (RI).

The idea is that
1 The constructor creates an object satisfying the RI and,
2 The modifying methods assume the invariant and should preserve it

Therefore, if our methods depend on external data we should check it

inside the class definition

def setRGB(self , r, g, b):

assert in_range(r) and in_range(g) and in_range(b)

self.r = r; self.g = g; self.b = b;

outside

def in_range(component):

return component >= 0 and component <= 1

In theory this shouldn’t be necessary but in practice it helps find bugs.

F. Carreiro (ILLC) Imperative programming with Python January 2015 7 / 17

Classes: string representation

The default printing of an object is not very useful

>>> print c

<__main__.Color object at 0x55f10 >

The str method returns a string representation of the object

By redefining it we say how the object should be printed

inside the class definition

def __str__(self):

return ’red: %i, green: %i, blue: %i’ % (self.r * 255,

self.g * 255, self.b * 255)

>>> print c

red: 51, green: 191, blue: 128

F. Carreiro (ILLC) Imperative programming with Python January 2015 8 / 17

Classes: comparing objects

>>> c1 = Color (0.2, 0.75, 0.5)

>>> c2 = Color (0.2, 0.75, 0.5)

>>> print c1; print c2

red: 51, green: 191, blue: 191

red: 51, green: 191, blue: 191

c1 and c2 are different objects representing the same color.

Intuitively, is should return False and == return True.

>>> c1 is c2

False

>>> c1 == c2

False

Watch out: The == operator is (by default) defined as is for
user-defined types!

F. Carreiro (ILLC) Imperative programming with Python January 2015 9 / 17

Classes: comparing objects

The eq method computes the comparison

We should redefine it to reflect the expected behaviour

inside the class definition

def __eq__(self , other):

return (self.r == other.r and

self.g == other.g and

self.b == other.b)

>>> c1 == c2

True

F. Carreiro (ILLC) Imperative programming with Python January 2015 10 / 17

Classes: copying objects

Remember that we can’t just use = to copy objects.

>> d = c1

>> d is c1

True

it would only create an alias of the object.

Python provides the copy module to do so.

>>> import copy

>>> d = copy.copy(c1)

The copy function creates a new object and copies all the attributes.

>>> c1 is d

False

>>> c1 == d

True

F. Carreiro (ILLC) Imperative programming with Python January 2015 11 / 17

A more complex example

class Car(object):

def __init__(self , np=0, c=Color ()):

self.numberplate = np

self.color = c

def __eq__(s, o):

return (s.numberplate == o.numberplate and

s.color == o.color)

Observe that

One of the attributes is also a user-defined type.

When defining == for Car we use the equality of Color .

F. Carreiro (ILLC) Imperative programming with Python January 2015 12 / 17

A more complex example

>>> mycar = Car(np=123)

>>> hiscar = copy.copy(mycar)

>>> mycar is hiscar

False

A closer look to the attributes reveals something strange

>>> mycar.color is hiscar.color

True

mycar

numberplate

hiscar

numberplate

color

r
g
b

color

The copy function does a shallow copy.

F. Carreiro (ILLC) Imperative programming with Python January 2015 13 / 17

A more complex example

The deepcopy function recursively copies the object.

>>> hiscar = copy.deepcopy(mycar)

>>> mycar is hiscar

False

>>> mycar.color is hiscar.color

False

mycar

numberplate

hiscar

numberplate

color

r
g
b

color

r
g
b

F. Carreiro (ILLC) Imperative programming with Python January 2015 14 / 17

Class attributes

Classes are also objects

>>> print Car

<class ’__main__.Car’>

They can have attributes associated with no particular instance.

class Color(object):

""" Represents a color """

blackRGB = (0,0,0)

redRGB = (1,0,0)

>>> print Color.redRGB

(1,0,0)

These are called class attributes.

F. Carreiro (ILLC) Imperative programming with Python January 2015 15 / 17

Static methods

Most of the methods we defined received ‘self’ as a parameter.

Sometimes we don’t want (or need) that.

inside the Color class definition

@staticmethod

def in_range(component):

return component >= 0 and component <= 1

Static methods do not receive an instance.

They are defined with the @staticmethod decorator.

They belong to the same class because they concern the same
concept.

inside the class definition

def setRGB(self , r, g, b):

assert Color.in_range(r) and

Color.in_range(g) and Color.in_range(b)

...

F. Carreiro (ILLC) Imperative programming with Python January 2015 16 / 17

References

Chapters 15–17 of the book
http://greenteapress.com/thinkpython/thinkpython.html

RGB
http://en.wikipedia.org/wiki/RGB_color_model

YIQ
http://en.wikipedia.org/wiki/YIQ

Shallow and deep copy
http://docs.python.org/library/copy.html

Python decorators
http://docs.python.org/glossary.html#term-decorator

Python static method decorator
http://docs.python.org/library/functions.html#staticmethod

F. Carreiro (ILLC) Imperative programming with Python January 2015 17 / 17

http://greenteapress.com/thinkpython/thinkpython.html
http://en.wikipedia.org/wiki/RGB_color_model
http://en.wikipedia.org/wiki/YIQ
http://docs.python.org/library/copy.html
http://docs.python.org/glossary.html#term-decorator
http://docs.python.org/library/functions.html#staticmethod

